Equations – Linear

MATH by Wilson
Your Personal Mathematics Trainer
MathByWilson.com

Equations: Equations have EQUAL SIGNS!

IF you want a better understanding of what is going on, then you will "check" all your potential solutions!

Example:

$$2\mathbf{x} - 4 = 6 \Rightarrow 2\mathbf{x} = 10 \Rightarrow \mathbf{x} = 5$$

Check:
$$2(5) - 4 = 6 \implies 6 = 6$$

Without letters - except for the unknown

(1) Question: Find the solution of the equation 3-(4-2x)=3(x+2)-4x+2

1

Solution:

Step	Equation	Reason
0	$3 - (4 - 2\mathbf{x}) = 3(\mathbf{x} + 2) - 4\mathbf{x} + 2$	
1	$3 - 4 + 2\mathbf{x} = 3\mathbf{x} + 6 - 4\mathbf{x} + 2$	
2	$-1 + 2\mathbf{x} = -\mathbf{x} + 8$	
3	$\mathbf{x} + 2\mathbf{x} = 8 + 1$	
4	$3\mathbf{x} = 9$	
5	$\mathbf{x} = 3$	

Solution graph: _______ 3_____

(2) **Question**: Solve for x in the equation 2(5x-3) = 7-2x

Solution:

Step	Equation	Reason
0	$2(5\mathbf{x}-3)=7-2\mathbf{x}$	
1	$10\mathbf{x} - 6 = 7 - 2\mathbf{x}$	
2	$2\mathbf{x} + 10\mathbf{x} = 6 + 7$	
3	$12\mathbf{x} = 13$	
4	$\mathbf{x} = \frac{13}{12}$	

Solution graph: ______13/12_____

(3) **Question**: Find the solution x in the equation $\frac{3}{4}x - 2 = \frac{1}{3} + 2x$ **Solution**:

Step Equation Reason 0 $\frac{3}{4}x - 2 = \frac{1}{3} + 2x$ Image: Control of the control of th

(4) Question: Solve for $x : \frac{2}{1-x} = \frac{4}{3}$ Solution:

Step	Equation	Reason
0	$\frac{2}{1-\mathbf{x}} = \frac{4}{3}$	
1	$2*3 = 4(1-\mathbf{x})$	
2	$6 = 4 - 4\mathbf{x}$	
3	$4\mathbf{x} = 4 - 6$	
4	$4\mathbf{x} = -2$	
5	$\mathbf{x} = -\frac{2}{4} = -\frac{1}{2}$	

Note: This equation is a linear "rational" equation since the "x" is in the denominator but can be converted to the usual linear format.

With letters – Literal Equations

(5) Question: The solution x of the equation $\frac{a}{x} = \frac{b}{a}$ is x = ?Solution:

Step	Equation	Reason
0	$\frac{\mathbf{a}}{\mathbf{x}} = \frac{\mathbf{b}}{\mathbf{a}}$	
1	$\mathbf{a}^2 = \mathbf{b}\mathbf{x}$	
2	$\frac{\mathbf{a}^2}{\mathbf{b}} = \mathbf{x} \ \mathbf{OR} \ \mathbf{x} = \frac{\mathbf{a}^2}{\mathbf{b}}$	

Note: Can not graph the solution set.

(6) Question: The solution x of the equation $\mathbf{a} - \mathbf{b}\mathbf{x} = \mathbf{c}(2 - \mathbf{x})$ is $\mathbf{x} = ?$ Solution:

Step	Equation	Reason
0	$\mathbf{a} - \mathbf{b} \mathbf{x} = \mathbf{c} (2 - \mathbf{x})$	
1	$\mathbf{a} - \mathbf{b}\mathbf{x} = 2\mathbf{c} - \mathbf{c}\mathbf{x}$	
2	$\mathbf{a} - 2\mathbf{c} = \mathbf{b}\mathbf{x} - \mathbf{c}\mathbf{x}$	Group all the x terms together
3	$\mathbf{a} - 2\mathbf{c} = \mathbf{x}(\mathbf{b} - \mathbf{c})$	
4	$\frac{\mathbf{a} - 2\mathbf{c}}{\mathbf{b} - \mathbf{c}} = \mathbf{x} \mathbf{OR} \mathbf{x} = \frac{\mathbf{a} - 2\mathbf{c}}{\mathbf{b} - \mathbf{c}} = \frac{2\mathbf{c} - \mathbf{a}}{\mathbf{c} - \mathbf{b}}$	

(7) **Question**: Solve the following equations:

a.
$$2\mathbf{x} = 3 \Rightarrow \mathbf{x} = \frac{3}{2}$$

b.
$$-4\mathbf{x} = 7 \Rightarrow \mathbf{x} = -\frac{7}{4}$$

c. ... There are an infinite number of equations like these. However, consider ax = b; $a \ne 0$. We have

$$ax = b \Rightarrow x = \frac{b}{a}$$

Note: We have actually solved an infinite number of equations. This is the power of algebra!