Quadratic Equations – Applications

MATH by Wilson
Your Personal Mathematics Trainer
MathByWilson.com

Various Word Problems, Applications, ...:

Geometry - Rectangle

(1) Given that the perimeter of a rectangle is 72" and its area is 224 sq ", find its length 1 and its width w.

Fundamental facts: P = 2l + 2w; A = l * w

$$224 = l*w$$

$$72 = 2\mathbf{l} + 2\mathbf{w}$$

$$36 = \mathbf{l} + \mathbf{w}$$

$$l = 36 - w$$

Step	Equation	Reason
0	$224 = \mathbf{l} * \mathbf{w}$	
1	$224 = (36 - \mathbf{w}) * \mathbf{w}$	
2	$224 = 36\mathbf{w} - \mathbf{w}^2$	
3	$\mathbf{w}^2 - 36\mathbf{w} + 224 = 0$	
4	$(\mathbf{w}-8)(\mathbf{w}-28)=0$	
5	$\begin{vmatrix} \mathbf{w} - 8 = 0 \\ \mathbf{w} = 8 \end{vmatrix} \begin{vmatrix} \mathbf{w} - 28 = 0 \\ \mathbf{w} = 28 \end{vmatrix}$	
	$ \mathbf{w} = 8$ $ \mathbf{w} = 28$	
6	$\mathbf{w} = 8$ " (smaller of two values)	
	$1 = 36 - \mathbf{w} = 28"$	

Geometry – Right Triangle (I "smell" the Pythagorean Theorem)

In a **right** triangle:

$$(\operatorname{Side}_1)^2 + (\operatorname{Side}_2)^2 = (\operatorname{Hypotenuse})^2$$

 $\mathbf{a}^2 + \mathbf{b}^2 = \mathbf{c}^2$

Note: Hypotenuse is "longest" side

(2) The hypotenuse of a right triangle is 13". If one side is 7" longer that the other side, find the perimeter "P" and area "A" of this triangle.

Fundamental facts:
$$\mathbf{P} = \mathbf{a} + \mathbf{b} + \mathbf{c}$$
; $\mathbf{A} = \frac{1}{2} * \mathbf{a} * \mathbf{b}$

Let
$$\mathbf{a} = \mathbf{x}$$
 (one unknown side)

Then
$$\mathbf{b} = \mathbf{x} + 7$$
 (other unknown side)

$$c = 13$$

Step	Equation	Reason
0	$\mathbf{x}^2 + (\mathbf{x} + 7)^2 = 13^2$	
1	$x^2 + x^2 + 14x + 49 = 169$	
2	$2x^2 + 14x - 120 = 0$	
3	$\mathbf{x}^2 + 7\mathbf{x} - 60 = 0$	
4	$(\mathbf{x}-5)(\mathbf{x}+12)=0$	
5	$\begin{vmatrix} \mathbf{x} - 5 = 0 \\ \mathbf{x} = 5 \end{vmatrix} \begin{vmatrix} \mathbf{x} + 12 = 0 \\ \mathbf{x} = -12 \end{vmatrix}$	
6	$\mathbf{a} = \mathbf{x} = 5$ " (positive value) $\mathbf{b} = \mathbf{x} + 7 = 12$ "	
7	P = a + b + c = 5 + 12 + 13 = 30"	
8	$\mathbf{A} = \frac{1}{2} * \mathbf{a} * \mathbf{b} = \frac{1}{2} * 5 * 12 = 30 \text{ sq}$ "	

2

Motion

(3) At the same time when Dr W cycles **north** at a constant rate of 5 mph, Mrs. Dr W cycles **east** at 12 mph. When will they be 52 miles apart?

Fundamental facts: $\mathbf{d} = \mathbf{r} * \mathbf{t}$; $\mathbf{a}^2 + \mathbf{b}^2 = \mathbf{c}^2$

Dr W:
$$\mathbf{d}_{1} = \mathbf{r}_{1} * \mathbf{t}_{1} = 5\mathbf{t}_{1}$$

Mrs. Dr W:
$$\mathbf{d}_2 = \mathbf{r}_2 * \mathbf{t}_2 = 12\mathbf{t}_1$$

Note:
$$\mathbf{t}_1 = \mathbf{t}_2$$
 (call it \mathbf{t})

Let
$$\mathbf{a} = \mathbf{d}_1 = 5\mathbf{t}$$

Then $\mathbf{b} = \mathbf{d}_2 = 12\mathbf{t}$
 $\mathbf{c} = 52$

Step	Equation	Reason
0	$\left(\mathbf{d}_{1}\right)^{2} + \left(\mathbf{d}_{2}\right)^{2} = 52^{2}$	
1	$(5\mathbf{t})^2 + (12\mathbf{t})^2 = 52^2$	
2	$25t^2 + 144t^2 = 2704$	
3	$169\mathbf{t}^2 = 2704$	
4	$\mathbf{t}^2 = 16$	
_	$\mathbf{t} = \pm 4$	
5	$\mathbf{t} = 4 \text{ hr.} (\mathbf{t} > 0)$	

3

Numbers

(4) A positive number "x" is $\frac{15}{4}$ greater than its reciprocal " $\frac{1}{x}$ ". Find the number "x".

Fundamental equation: $\mathbf{x} = \frac{15}{4} + \frac{1}{\mathbf{x}}$

Step	Equation	Reason
0	$\mathbf{x} = \frac{15}{4} + \frac{1}{\mathbf{x}}$	
1	$4\mathbf{x}(\mathbf{x}) = 4\mathbf{x}\left(\frac{15}{4} + \frac{1}{\mathbf{x}}\right)$	
2	$4\mathbf{x}^2 = 15\mathbf{x} + 4$	
3	$4\mathbf{x}^2 - 15\mathbf{x} - 4 = 0$	
4	$(\mathbf{x}-4)(4\mathbf{x}+1)=0$	
5	x-4=0 $ 4x+1=0 $ $ x=4 $ $ x=-1/4 $	
6	$\mathbf{x} = 4 \ (\mathbf{x} > 0)$	

Physics

Consider an object moving in a vertical direction only. Under certain assumptions, the **position** "s = s(t)" of this object at time "t" is given by

$$\mathbf{s} = \mathbf{s}(\mathbf{t}) = \frac{1}{2}\mathbf{g}\mathbf{t}^2 + \mathbf{v}_0\mathbf{t} + \mathbf{s}_0 = -16\mathbf{t}^2 + \mathbf{v}_0\mathbf{t} + \mathbf{s}_0$$
 (ft)

where

$$\mathbf{g} = -32 \text{ ft/sec}^2$$

 $\mathbf{v}_0 = \text{initial velocity } (\mathbf{t} = 0)$

 $\mathbf{v}_0 < 0$ means object "thrown downward"

 $\mathbf{v}_0 = 0$ means object "dropped"

 $\mathbf{v}_0 > 0$ means object "thrown upward"

 $\mathbf{s}_0 = \text{initial position } (\mathbf{t} = 0)$

 $\mathbf{s}_0 < 0$ is NOT an option

 $\mathbf{s}_0 = 0$ means object starts at ground

 $\mathbf{s}_0 > 0$ means object starts above ground

The velocity of the object is given by

$$\mathbf{v} = \mathbf{v}(\mathbf{t}) = \mathbf{v}_0 + \mathbf{g}\mathbf{t} = \mathbf{v}_0 - 32\mathbf{t} \text{ (ft/sec)}$$

v < 0 means object traveling "downward"

v = 0 means object "stopped"

 $\mathbf{v} > 0$ means object traveling "upward"

The acceleration is given by

$$\mathbf{a} = \mathbf{a}(\mathbf{t}) = \mathbf{g} = -32$$

5

(5) The equations defining the motion of an object traveling in a vertical direction are given by

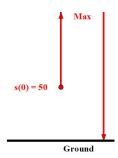
$$\mathbf{s} = \mathbf{s}(\mathbf{t}) = -16\mathbf{t}^2 + 144\mathbf{t} + 50$$

Note:

 $\mathbf{v}_0 = 144 \text{ ft/sec (object thrown upward)}$ $\mathbf{s}_0 = 50 \text{ ft (object starts 50 ft above ground)}$

$$\mathbf{v} = \mathbf{v}(\mathbf{t}) = 144 - 32\mathbf{t}$$

$$\mathbf{a} = \mathbf{a}(\mathbf{t}) = \mathbf{g} = -32$$



a. Where is the object after 3 sec? Is it traveling upward/stopped/downward?

$$\mathbf{s} = \mathbf{s}(3) = -16(3)^2 + 144(3) + 50 = 338 \text{ ft}$$

 $\mathbf{v} = \mathbf{v}(3) = 144 - 32(3) = 48 \text{ ft/sec (upward)}$

b. Where is the object after 5 sec? Is it traveling upward/stopped/downward?

$$\mathbf{s} = \mathbf{s}(5) = -16(5)^2 + 144(5) + 50 = 370 \text{ ft}$$

 $\mathbf{v} = \mathbf{v}(5) = 144 - 32(5) = -16 \text{ ft/sec} \text{ (downward)}$

c. Where is the object when it stops?

$$\mathbf{v} = \mathbf{v}(\mathbf{t}) \stackrel{\text{SET}}{=} 0$$
$$144 - 32\mathbf{t} = 0$$
$$32\mathbf{t} = 144$$
$$\mathbf{t} = \frac{144}{32} = \frac{9}{2} \text{ sec}$$

$$\mathbf{s} = \mathbf{s} \left(\frac{9}{2} \right) = -16 \left(\frac{9}{2} \right)^2 + 144 \left(\frac{9}{2} \right) + 55 = 374 \text{ ft}$$

d. Since it was thrown upward $(\mathbf{v}_0 = 144 > 0)$, when will it return to ground? How fast is it traveling?

$$\mathbf{s} = \mathbf{s}(\mathbf{t}) = 0$$

$$-16\mathbf{t}^{2} + 144\mathbf{t} + 50 = 0$$

$$-8\mathbf{t}^{2} + 72\mathbf{t} + 25 = 0$$

$$8\mathbf{t}^{2} - 72\mathbf{t} - 25 = 0$$

$$\mathbf{a} = 8; \ \mathbf{b} = -72; \ \mathbf{c} = -25$$

$$\mathbf{t} = \frac{-\mathbf{b} \pm \sqrt{\mathbf{b}^{2} - 4\mathbf{a}\mathbf{c}}}{2\mathbf{a}}$$

$$\mathbf{t} = \frac{-[-72] \pm \sqrt{[-72]^{2} - 4[8][-25]}}{2[8]}$$

$$\mathbf{t} = \frac{72 \pm \sqrt{5184 + 800}}{16}$$

$$\mathbf{t} = \frac{72 \pm \sqrt{5984}}{16} \quad (\mathbf{t} > 0)$$

$$\mathbf{t} = \frac{72 + \sqrt{5984}}{16}$$

$$\mathbf{t} \approx 9.334 \text{ sec}$$

$$\mathbf{v}(\approx 9.334) \approx -154.713 \text{ ft/sec}$$