Equations – Quadratic in Form

MATH by Wilson
Your Personal Mathematics Trainer
MathByWilson.com

Quadratic Equation: $\mathbf{au}^2 + \mathbf{bu} + \mathbf{c} = 0$ (Standard Form) in \mathbf{u} (called the universal variable)

The **solutions** are $\mathbf{u} = \frac{-\mathbf{b} \pm \sqrt{\mathbf{b}^2 - 4ac}}{2\mathbf{a}}$ using the Quadratic Equation.

***** u can be any of the following plus plenty of others in the original equation.

$$\mathbf{u} = \mathbf{x}$$

$$\mathbf{u} = \frac{1}{\mathbf{x}^2}$$

$$\mathbf{u} = \sqrt[3]{\mathbf{x}} = \mathbf{x}^{1/3}$$

$$\mathbf{u} = \mathbf{x}^2$$

$$\mathbf{u} = \frac{1}{\mathbf{x}}$$

$$\mathbf{u} = \mathbf{x} - 2$$

Strategy: In the original equation, we

- 1. set $\mathbf{u} =$ "something" so we get a quadratic equation in \mathbf{u} : $\mathbf{a}\mathbf{u}^2 + \mathbf{b}\mathbf{u} + \mathbf{c} = 0$
- 2. solve this equation for \mathbf{u}
- 3. use the solutions for \mathbf{u} to get the original solutions for \mathbf{x}

We'll look at equations – Quadratic in Form – to get the following equations in **u**:

$$\mathbf{u}^2 - 14\mathbf{u} + 45 = 0$$

$$\mathbf{u}^2 + 7\mathbf{u} + 12 = 0$$

$$\mathbf{u}^2 - 13\mathbf{u} + 36 = 0$$

$$6\mathbf{u}^2 - 11\mathbf{u} - 10 = 0$$

Question 01: Find the solutions of the equation $\frac{1}{x^4} - 14 \frac{1}{x^2} + 45 = 0$.

Solution:

Set
$$\mathbf{u} = \frac{1}{\mathbf{x}^2}$$
 so that

$$\frac{1}{\mathbf{x}^4} - 14\frac{1}{\mathbf{x}^2} + 45 = 0$$

$$\left(\frac{1}{\mathbf{x}^2}\right)^2 - 14\left(\frac{1}{\mathbf{x}^2}\right) + 45 = 0$$

$$\mathbf{u}^2 - 14\mathbf{u} + 45 = 0$$

Note: $\mathbf{a} = 1$; $\mathbf{b} = -14$; $\mathbf{c} = 45$

Step	Equation	Reason
0	$\mathbf{u}^2 - 14\mathbf{u} + 45 = 0$	
1	$(\mathbf{u}-9)(\mathbf{u}-5)=0$	
2	$\begin{vmatrix} \mathbf{u} - 9 = 0 \\ \mathbf{u} = 9 \end{vmatrix} \begin{vmatrix} \mathbf{u} - 5 = 0 \\ \mathbf{u} = 5 \end{vmatrix}$	
2	$\mathbf{u} = 9 \qquad \mathbf{u} = 5$	
3	$\begin{vmatrix} \frac{1}{\mathbf{x}^2} = 9 \\ \mathbf{x}^2 = \frac{1}{9} \end{vmatrix} \begin{vmatrix} \frac{1}{\mathbf{x}^2} = 5 \\ \mathbf{x}^2 = \frac{1}{5} \\ \mathbf{x} = \pm \frac{1}{3} \end{vmatrix} \mathbf{x} = \pm \frac{1}{\sqrt{5}} = \pm \frac{\sqrt{5}}{5}$	

Graph of the solution set:

$$-1/\sqrt{5}$$
 $-1/3$ $1/\sqrt{5}$ $1/\sqrt{5}$

Question 02: The equation $\mathbf{x}^{2/3} + 7\mathbf{x}^{1/3} + 12 = 0$ has how many solutions? **Solution:**

Set
$$\mathbf{u} = \mathbf{x}^{1/3}$$
 so that
 $\mathbf{x}^{2/3} + 7\mathbf{x}^{1/3} + 12 = 0$
 $(\mathbf{x}^{1/3})^2 + 7(\mathbf{x}^{1/3}) + 12 = 0$
 $\mathbf{u}^2 + 7\mathbf{u} + 12 = 0$

Note: $\mathbf{a} = 1$; $\mathbf{b} = 7$; $\mathbf{c} = 12$

Step	Equation	Reason
0	$\mathbf{u}^2 + 7\mathbf{u} + 12 = 0$	
1	$(\mathbf{u}+4)(\mathbf{u}+3)=0$	
2	$\begin{vmatrix} \mathbf{u} + 4 = 0 \\ \mathbf{u} = -4 \end{vmatrix} \begin{vmatrix} \mathbf{u} + 3 = 0 \\ \mathbf{u} = -3 \end{vmatrix}$	
	$\mathbf{u} = -4 \qquad \mathbf{u} = -3$	
3	$\mathbf{x}^{1/3} = -4$ $\mathbf{x}^{1/3} = -3$	
	$\begin{vmatrix} \mathbf{x} & -4 \\ \mathbf{x} = (\mathbf{x}^{1/3})^3 = (-4)^3 \\ \mathbf{x} = -64 \end{vmatrix} \begin{vmatrix} \mathbf{x} & -5 \\ \mathbf{x} = (\mathbf{x}^{1/3})^3 = (-3)^3 \\ \mathbf{x} = -27 \end{vmatrix}$	

Grapy of the solution set:

Question 03: Find the *largest* solution of the equation $x^4 - 13x^2 + 36 = 0$. **Solution:**

Set
$$\mathbf{u} = \mathbf{x}^2$$
 so that
 $\mathbf{x}^4 - 13\mathbf{x}^2 + 36 = 0$
 $(\mathbf{x}^2)^2 - 13(\mathbf{x}^2) + 36 = 0$
 $\mathbf{u}^2 - 13\mathbf{u} + 36 = 0$

Note: $\mathbf{a} = 1$; $\mathbf{b} = -13$; $\mathbf{c} = 36$

Step	Equation	Reason
0	$\mathbf{u}^2 - 13\mathbf{u} + 36 = 0$	
1	$(\mathbf{u}-4)(\mathbf{u}-9)=0$	
2	$\begin{vmatrix} \mathbf{u} - 4 = 0 \\ \mathbf{u} = 4 \end{vmatrix} \begin{vmatrix} \mathbf{u} - 9 = 0 \\ \mathbf{u} = 9 \end{vmatrix}$	
	$\mathbf{u} = 4 \qquad \mathbf{u} = 9$	
3	$\mathbf{x}^2 = 4 \qquad \qquad \mathbf{x}^2 = 9$	
	$ \mathbf{x} = \pm \sqrt{4} = \pm 2 \mathbf{x} = \pm \sqrt{9} = \pm 3 $	

Graph of the solution set:

Question 04: What is the sum of the solutions of the equation

$$\frac{6}{x^2} - 11\frac{1}{x} - 10 = 0$$
?

Solution:

Set
$$\mathbf{u} = \frac{1}{\mathbf{x}}$$
 so that
$$\frac{6}{\mathbf{x}^2} - 11\frac{1}{\mathbf{x}} - 10 = 0$$

$$6\left(\frac{1}{\mathbf{x}}\right)^2 - 11\left(\frac{1}{\mathbf{x}}\right) - 10 = 0$$

$$6\mathbf{u}^2 - 11\mathbf{u} - 10 = 0$$

Note: $\mathbf{a} = 6$; $\mathbf{b} = -11$; $\mathbf{c} = -10$

Step	Equation		Reason
0	$6\mathbf{u}^2 - 11\mathbf{u} - 10 = 0$		
1	$(3\mathbf{u}+2)(2\mathbf{u}-5)=0$		
2	$3\mathbf{u} + 2 = 0$ $3\mathbf{u} = -2$ $\mathbf{u} = -\frac{2}{3}$	$\begin{vmatrix} 2\mathbf{u} - 5 = 0 \\ 2\mathbf{u} = 5 \\ \mathbf{u} = \frac{5}{2} \end{vmatrix}$	

3	$\frac{1}{\mathbf{x}} = -\frac{2}{3}$	$\frac{1}{\mathbf{x}} = \frac{5}{2}$	
	$\mathbf{x} = -\frac{3}{2}$	$\mathbf{x} = \frac{2}{5}$	

Graph of the solution set:

Sum of solutions is -11/10