Equations – Radical [Roots]

MATH by Wilson Your Personal Mathematics Trainer MathByWilson.com

The **basic idea** is to trade an equation with one or more radicals - $(\sqrt[n]{\text{Expression}})$ - for an equation that we have already studied that does NOT have radicals:

Original Equation: Contains Radicals

TRADE

New Equation: Does NOT Contain Radicals

Note that $(\sqrt[n]{\text{Expression}})^n = [(\text{Expression})^{1/n}]^n = \text{Expression is key to our success!}$

Warning: The theory tells me to tell you that a solution of the New Equation does NOT have to be a solution of the Original Equation. Therefore, it is **mandatory** to check "potential" solutions to ensure that they are "actual" solutions.

Note: We should *always* graph our solutions, if any, on the number line.

Question 01: Solve for x: $\sqrt{2x+5} = \frac{x}{2}$ Solution:

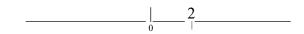
Step	Equation	Reason
0	$\sqrt{2\mathbf{x}+5} = \frac{\mathbf{x}}{2}$	
1	$\left(\sqrt{2\mathbf{x}+5}\right)^2 = \left(\frac{\mathbf{x}}{2}\right)^2$	Eliminate Radical
2	$2\mathbf{x} + 5 = \frac{\mathbf{x}^2}{4}$	
3	$8\mathbf{x} + 20 = \mathbf{x}^2$	
4	$\mathbf{x}^2 - 8\mathbf{x} - 20 = 0$	
5	$(\mathbf{x}+2)(\mathbf{x}-10)=0$	
6	x + 2 = 0 $x - 10 = 0x = -2$ $x = 10$	
7	$\mathbf{x} = -2: \text{Is NOT a solution}$ $\sqrt{2[-2]+5} \stackrel{?}{=} \frac{[-2]}{2}$ 1 ≠ -1	
8	$\mathbf{x} = 10: \text{ Is a solution}$ $\sqrt{2[10] + 5} \stackrel{?}{=} \frac{[10]}{2}$ $5 = 5$	

Graph of the solution set:

Question 02: Solve for x: $\sqrt{6-x} + \sqrt{x+2} = 4$ (This is a long problem because there are two radicals to eliminate **and** they must be eliminated correctly! **Solution:**

Step	Equation	Reason
0	$\sqrt{6-\mathbf{x}} + \sqrt{\mathbf{x}+2} = 4$	
1	$\sqrt{6-\mathbf{x}} = 4 - \sqrt{\mathbf{x}+2}$	
2	$\left(\sqrt{6-\mathbf{x}}\right)^2 = \left(4-\sqrt{\mathbf{x}+2}\right)^2$	Eliminate 1 st Radical
3	$6 - \mathbf{x} = 16 - 8\sqrt{\mathbf{x} + 2} + (\mathbf{x} + 2)$	
4	$6 - \mathbf{x} = \mathbf{x} + 18 - 8\sqrt{\mathbf{x} + 2}$	
5	$-2\mathbf{x} - 12 = -8\sqrt{\mathbf{x} + 2}$	
6	$\mathbf{x} + 6 = 4\sqrt{\mathbf{x} + 2}$	Divide by "-2"
7	$\left(\mathbf{x}+6\right)^2 = \left(4\sqrt{\mathbf{x}+2}\right)^2$	Eliminate 2 nd Radical
8	$\mathbf{x}^2 + 12\mathbf{x} + 36 = 16(\mathbf{x} + 2) = 16\mathbf{x} + 32$	
9	$\mathbf{x}^2 - 4\mathbf{x} + 4 = 0$	
10	$\left(\mathbf{x}-2\right)^2=0$	
11	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	
12	$\mathbf{x} = 2 : \text{Is a solution}$ $\sqrt{6 - [2]} + \sqrt{[2] + 2} \stackrel{?}{=} 4$	
	2+2=4 4=4	

Graph of the solution set:



Equation 03: Solve for x: $\sqrt[3]{3-x} = 3$ **Solution:**

Step	Equation	Reason
0	$\sqrt[3]{3-\mathbf{x}}=3$	
1	$\left(\sqrt[3]{3-\mathbf{x}}\right)^3 = \left(3\right)^3$	Eliminate Radical
2	3 - x = 27	
3	$-\mathbf{x} = 24 \implies \mathbf{x} = -24$	
7	x = -24 : Is a solution $\sqrt[3]{3-[-24]}^{?} = 3$ $\sqrt[3]{27}^{?} = 3$ 3 = 3	

Graph of the solution set:

