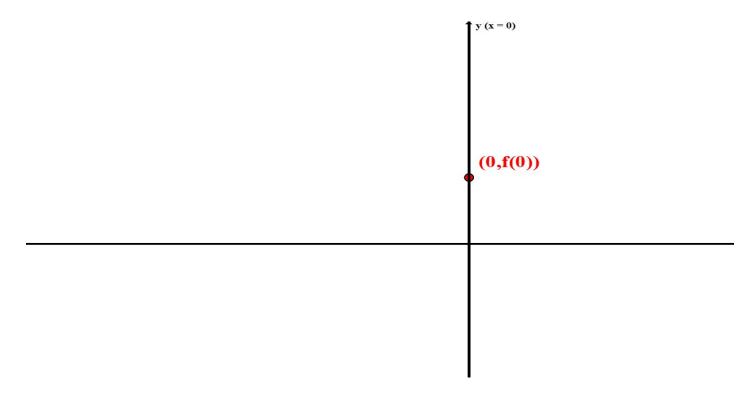
FUNctions: Intercept Points

MATH by Wilson Your Personal Mathematics Trainer MathByWilson.com

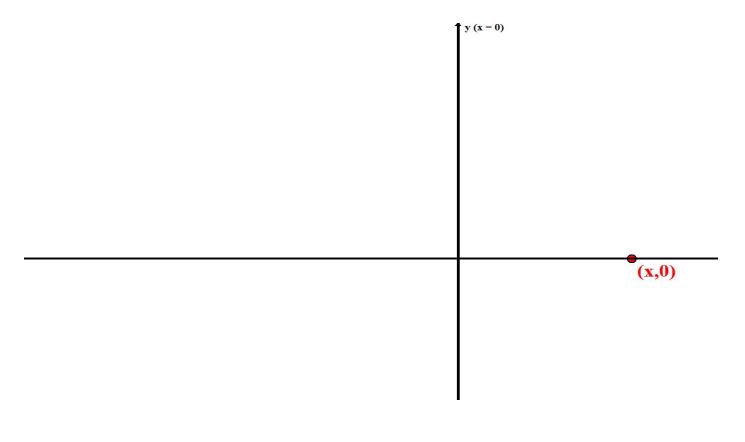
Definition: If $0 \in \text{Dom } \mathbf{f}$, then *the* point $(0, \mathbf{f}(0))$ is the y-intercept point of the function:



Note:

- 1. There is a maximum of one (1) y-intercept point
- 2. It is the intersection of the graph with the y-axis
- 3. The Action Verb is EVALUATE Calculate f(0): (0, f(0))

Definition: If f(x) = 0 for some x in the domain of a function f, then the point (x, 0) is *an* x-intercept point:



Note:

- 1. There are 0,1,2,...n,... up to an infinite number of x-intercept points: $\{x \in Dom \ f | f(x) = 0\}$
- 2. It is an intersection of the graph with the x-axis
- 3. The Action Verb is Solve: Solve the equation f(x) = 0

In the example below, we draw the entire graph but at this point of the analysis we only know the intercept points.

Example 01: Find the x-intercept and y-intercept points of the following functions:

1. $f(x) = x^3 - 3x$

The y-intercept point is (0,0). The x-intercept points are given by

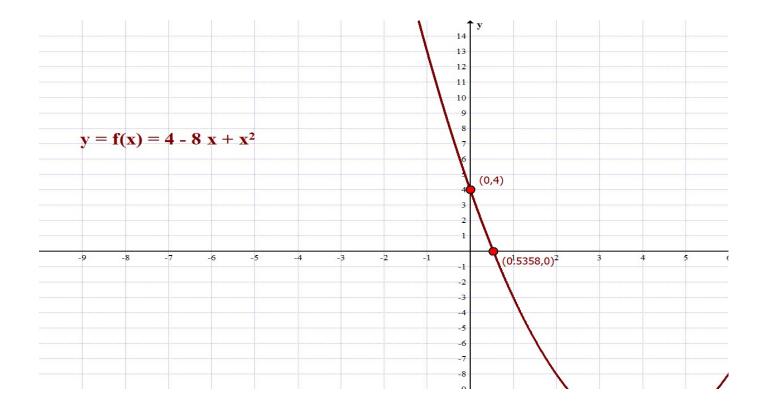
 $\mathbf{f}(\mathbf{x}) = \mathbf{x} \left(\mathbf{x}^2 - 3 \right) \stackrel{\text{SET}}{=} 0 \Longrightarrow \mathbf{x} = \pm \sqrt{3}, 0 \Longrightarrow \left(-\sqrt{3}, 0 \right), (0, 0), \left(\sqrt{3}, 0 \right)$ 14 13 12 11 10 9 $\mathbf{y} = \mathbf{f}(\mathbf{x}) = \mathbf{x}^3 - 3\mathbf{x}$ (-Sqrt(3),0) -7 -5 -3 (Sqrt(3),0) -9 -8 -6 -4 (0,0) 1 4 5 -2 -3 -5 -8



2. $f(x) = 4 - 8x + x^2$

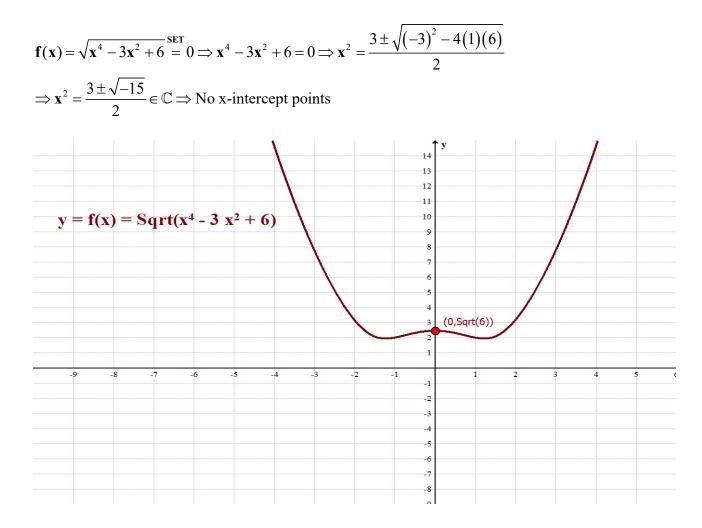
The y-intercept point is (0,4). The x-intercept points are given by

$$\mathbf{f}(\mathbf{x}) = 4 - 8\mathbf{x} + \mathbf{x}^{2} \stackrel{\text{SET}}{=} 0 \Rightarrow \mathbf{x} = \frac{8 \pm \sqrt{(-8)^{2} - 4(1)(4)}}{2} = \frac{8 \pm \sqrt{48}}{2} = \frac{8 \pm 4\sqrt{3}}{2}$$
$$\Rightarrow \mathbf{x} = 4 \pm 2\sqrt{3} \Rightarrow (4 - 2\sqrt{3}, 0), (4 + 2\sqrt{3}, 0)$$



3. $f(x) = \sqrt{x^4 - 3x^2 + 6}$

The y-intercept point is $(0,\sqrt{6})$. The x-intercept points are given by



$$4. \quad \mathbf{f}(\mathbf{x}) = \frac{2\mathbf{x}}{\mathbf{x}^2 + 4}$$

The y-intercept point is (0,0). The x-intercept points are given by

 $\mathbf{f}(\mathbf{x}) = \frac{2\mathbf{x}}{\mathbf{x}^2 + 4} \stackrel{\text{SET}}{=} 0 \Rightarrow \mathbf{x} = 0 \Rightarrow (0, 0)$ Both an x-intercept and y-intercept point

