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If a function does NOT have any breaks in its graph, it is said to be a continuous function. There are three (3) 
types of breaks (called discontinuities) our graphs may have: 
 

1. Hole: 
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The  \ 2 xDom f   and we denote the hole in the graph at (2,8) by an “x”  
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Note: This analysis just gives us a small portion of the graph although the entire graph was drawn. 
 
 
 
 
 
 
 

2. Finite Jump: 
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The graph has a finite jump of 2 units at x = 2.  
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3. Vertical asymptote: 2(2 3)
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The vertical line x = 2 is called a vertical asymptote of f. Note that as the x-values get “closer and 
closer” to x = 2, the corresponding f(x) values get bigger without bound (we say “goes to positive 
infinity) on one side of x = 2 and smaller without bound (we say “goes to negative infinity) on the other. 
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Theorem (Fundamental Theorem of Continuity): Let f  be a function defined on an interval I . Assume  
1. f is continuous for all x I        (NO Breaks) 
2. ( ) 0 for all  f x x I                      (NO x-intercept POINTS) 

Then either 
 ( ) 0 for all  f x x I  

or  
 ( ) 0 for all  f x x I  

 

Note:  
1. Pos f  will represent the x-axis regions where ( ) 0 f x  
2. Neg f will represent the x-axis regions where ( ) 0f x  

 

Example 01: Given 3( ) 3 f x x x , find where it is negative, zero, and positive. 
 

Solution: 
 

We first find the x-intercept points: 
 

        3 2( ) 3 3 0 0, 3 3,0 , 0,0 , 3,0         
SET

f x x x x x x  

These three (3) points divide the x-axis into four intervals: 
 

        , 3 , 3,0 , 0, 3 , 3,     
 

Each of these intervals satisfies the hypothesis in the above theorem so we can select a representative point in each 
interval to determine the sign in the entire interval: 
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______________________ 3 __________ 0 __________ 3 ____________________

( 2) 0 ( 1) 0 (1) 0 (2) 0f f f f

   


     

   
 

 

Therefore,    P 3,0 3,   os f and    , 3 0, 3   Neg f  

The function is positive in the green regions and negative in the red regions: 
 
 

 


