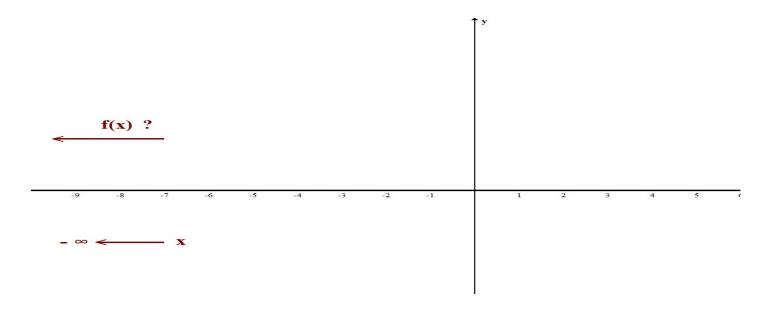
FUNctions: Behavior at/toward Infinity

MATH by Wilson
Your Personal Mathematics Trainer
MathByWilson.com

For the sake of discussion, let us assume that the domain of the function f under consideration is all the real numbers: \mathbb{R}_x . To get a rough approximation to the graph of f, we plot some points on its graph including the intercept points and then connect them like we did with our "dot-to-dot" colorings book when we were young assuming that there are no breaks in the graph. However, since we can only plot a finite number of points, our graphical representation will be lacking. To improve our representation, we determine if the f(x) values have a pattern as the x-values increase (decrease) without bound:



In symbols, the question is $|\mathbf{x}| \to +\infty \Rightarrow \mathbf{f}(\mathbf{x}) \to ?$

In *College Algebra*, we concentrate on two (2) patterns the f(x) values can have:

1. $|\mathbf{x}| \to +\infty \Rightarrow \mathbf{f}(\mathbf{x}) \to \pm \infty$

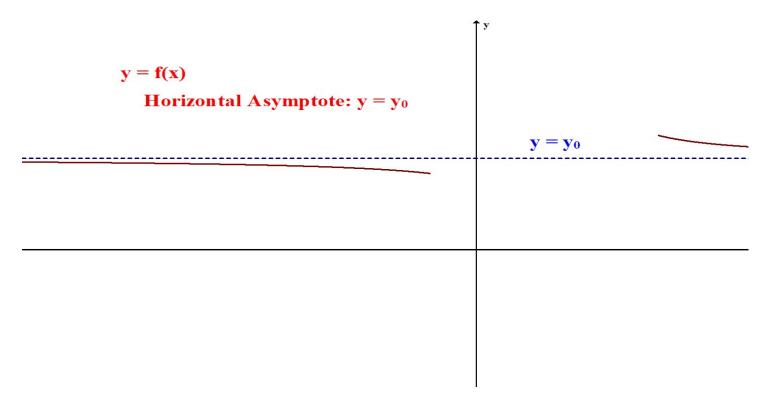
As the x-values increase (decrease) without bound, the corresponding f(x) values increase (decrease) without bound.

2. $|\mathbf{x}| \to +\infty \Rightarrow \mathbf{f}(\mathbf{x}) \to \mathbf{y}_0 \in \mathbb{R}_{\mathbf{y}}$ As the x-values increase (decrease) without bound, the corresponding $\mathbf{f}(\mathbf{x})$ values approach a number \mathbf{y}_0 .

In the second case, we obtain what we call a horizontal asymptote of f: $y = y_0$

Definition: A horizontal line $y = y_0$ is a **horizonal asymptote** of f if as the x-values increase (decrease) without bound (we say "goes to $+\infty$ (or $-\infty$)"), the corresponding (x, f(x)) points get "closer and closer" to the line $y = y_0$.

Note: In other words, the graph of f gets "closer and closer" to $y = y_0$ as the x-values approach $+\infty$ (or $-\infty$).



Note: A horizontal asymptote $y = y_0$ may or may not intercept the graph.

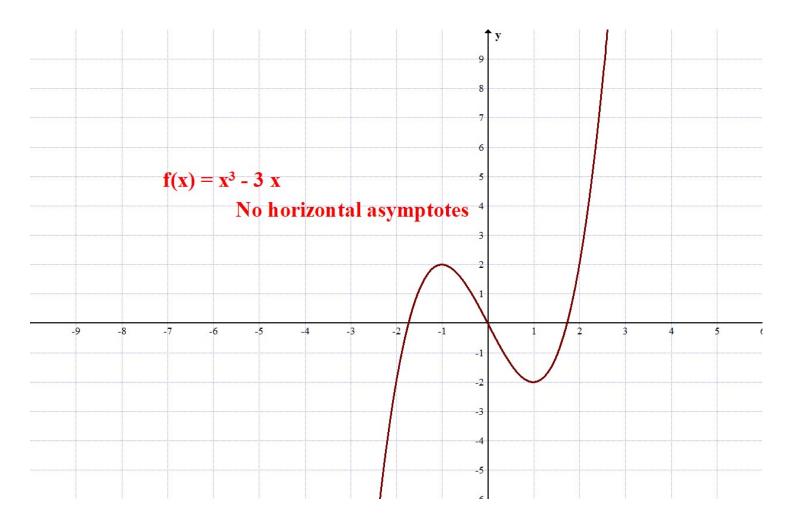
Note: There can be 0, 1,or 2 horizontal asymptotes.

In the examples below, we just want to identify the behavior as $\left|x\right|\to +\infty\,$, given the graph.

Example 01: $y = f(x) = x^3 - 3x$

Analysis:

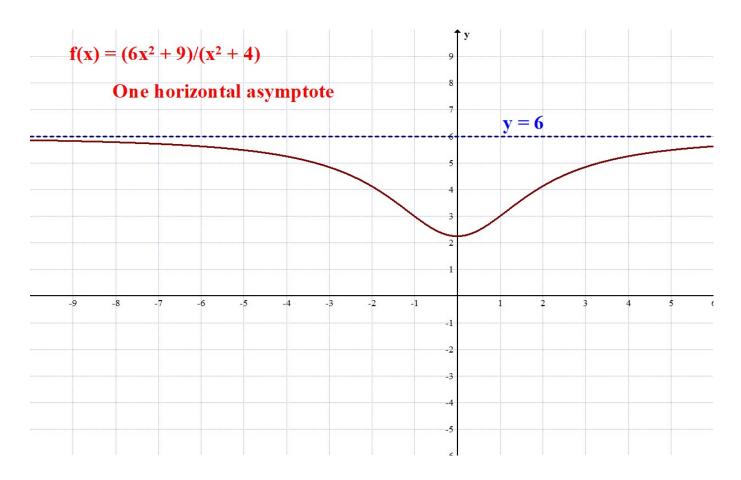
Considering the graph of f we see . Therefore there are no horizontal asymptotes.



Example 02:
$$y = f(x) = \frac{6x^2 + 9}{x^2 + 4}$$

Analysis:

Considering the graph of f, we see $x \to -\infty \Rightarrow f(x) \to 6$; $x \to +\infty \Rightarrow f(x) \to 6$. Therefore y = 6 is a horizontal asymptote of f.



Example 03:
$$f(x) = \frac{\sqrt{2+4x^2}}{x}$$

Analysis:

Considering the graph of f, we see $\mathbf{x} \to -\infty \Rightarrow \mathbf{f}(\mathbf{x}) \to -2$; $\mathbf{x} \to +\infty \Rightarrow \mathbf{f}(\mathbf{x}) \to +2$. Therefore y = -2 **AND** y=2 are horizontal asymptotes of f.

