FUNctions: Maximum/Minimum Points

MATH by Wilson
Your Personal Mathematics Trainer
MathByWilson.com

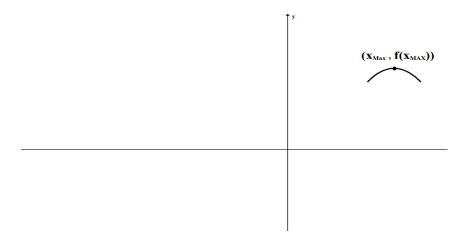
When a function f is increasing (decreasing) until it reaches a point and then decreases (increases) we have a maximum (minimum) point on the graph.

Definition: A point $(x_{MAX}, f(x_{MAX}))$ on the graph of a function f is called a relative maximum point of f if

$$f(x_{MAX}) \ge f(x)$$

for x "close to" x_{MAX}

Note: If $f(x_{MAX}) \ge f(x)$ for all $x \in Dom\ f$, the point $\left(x_{MAX}, f(x_{MAX})\right)$ is called an absolute minimum point of f.

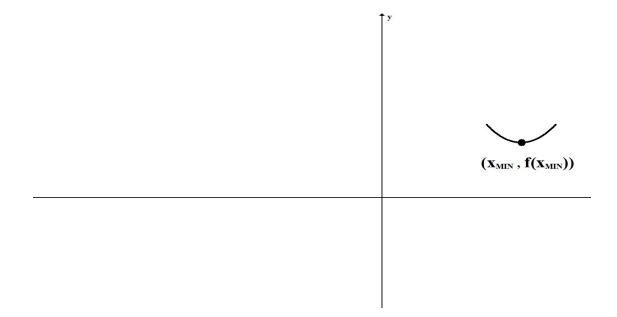


Definition: A point $(x_{MIN}, f(x_{MIN}))$ on the graph of a function f is called a **relative maximum point** of f if

$$f(x_{MIN}) \! \leq \! f(x)$$

for x "close to" x_{MIN}

Note: If $f(x_{MIN}) \le f(x)$ for all $x \in Dom\ f$, the point $\left(x_{MIN}, f(x_{MIN})\right)$ is called an absolute minimum point of f.



Note: A function can have 0, 1, 2, ..., n, ... up to an infinite number of relative (absolute) maximum (minimum) points.

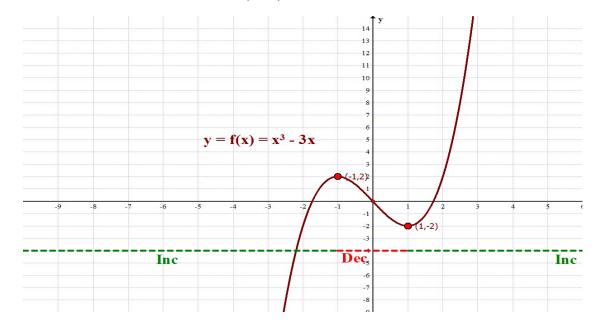
Note: There can be more than one (1) absolute maximum (minimum) point but all of them *must* have the same y-value.

Example 01: From the graph, determine where the following functions have maximum and minimum points.

1.
$$\mathbf{f}(\mathbf{x}) = \mathbf{x}^3 - 3\mathbf{x}$$

Considering the graph, we have

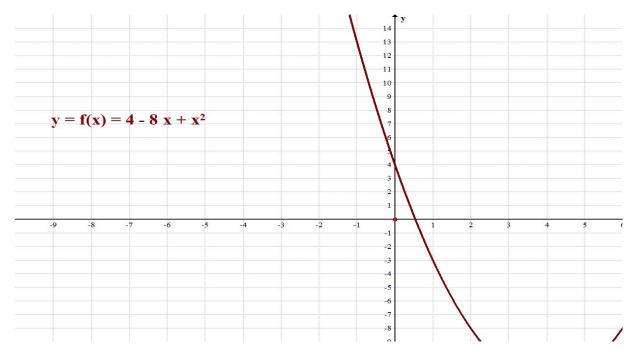
- a. Relative Maximum Point: (-1,2)
- b. Relative Minimum Point: (1,-2)



2.
$$\mathbf{f}(\mathbf{x}) = 4 - 8\mathbf{x} + \mathbf{x}^2$$

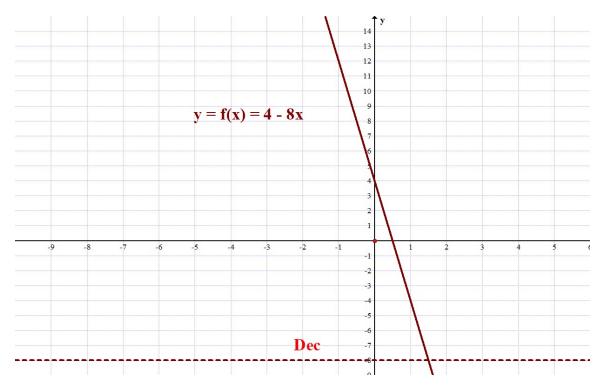
From the graph, we obtain

- a. Relative Minimum Point: (4,-12)
- b. Absolute Minimum Point: (4,-12)



3. f(x) = 4 - 8x

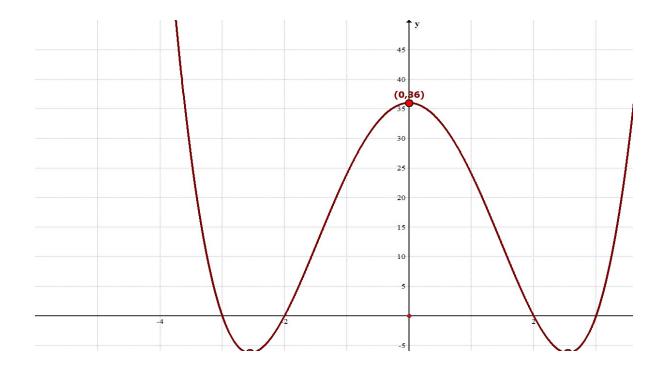
There are no Maximum or Minimum Points.



4.
$$\mathbf{f}(\mathbf{x}) = \mathbf{x}^4 - 13\mathbf{x}^2 + 36$$

The graph yields

- a. Relative Maximum Point: (0,36)
- b. Relative Minimum Points: $\left(-\sqrt{\frac{13}{2}, -\frac{25}{4}}\right); \left(\sqrt{\frac{13}{2}, -\frac{25}{4}}\right)$
- c. Absolute Minimum Points: $\left(-\sqrt{\frac{13}{2}, -\frac{25}{4}}\right); \left(\sqrt{\frac{13}{2}, -\frac{25}{4}}\right)$

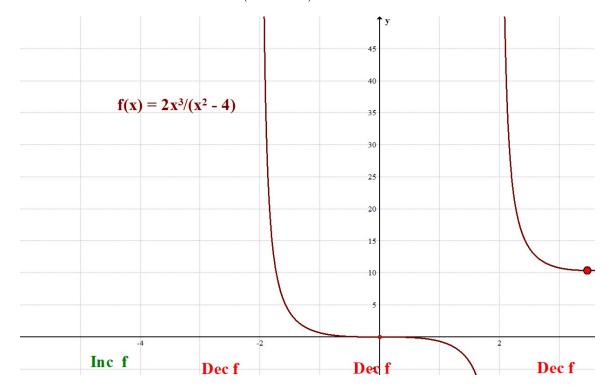


6

5.
$$\mathbf{f}(\mathbf{x}) = \frac{2\mathbf{x}^3}{\mathbf{x}^2 - 4}$$

Looking at the graph, we have

- a. Relative Maximum Point: $\left(-2\sqrt{3}, -6\sqrt{3}\right)$
- b. Relative Minimum Point: $(2\sqrt{3}, 6\sqrt{3})$



7