FUNctions – Range

MATH by Wilson Your Personal Mathematics Trainer MathByWilson.com

Basic Function Idea/Concept – For each "allowable input:", there corresponds a "unique output: Allowable Input \Rightarrow Unique Output

The functions we consider involve just real numbers and are referred to as "real-valued functions":

Assumption: We consider real-valued functions, that is, functions that take real #'s to real #'s

Recall from our set theory material:

- 1. The symbol "⊆" means "contained in" or "a subset of"
- 2. The symbol " \in " means "is an element of " or "member of"
- 3. \mathbb{R}_{x} represents a copy of the *horizontal* number line
- 4. \mathbb{R}_{v} represents a copy of the *vertical* number line

Using these symbols, we present the technical definition of a function:

Definition: A function f from a set $X \subseteq \mathbb{R}_x$ unto a set $Y \subseteq \mathbb{R}_y$ is a correspondence that associates with each $x \in X$ one and only one $y \in Y$. This is sometimes denoted $f : X \to Y$. Also, the correspondence, rule, formula, ... is frequently denoted by f(x): y = f(x).

 $\mathbf{X} \subseteq \mathbb{R}_{\mathbf{x}}$ is called the **domain**: Domain $\mathbf{f} = \mathbf{Dom} \mathbf{f}$

Note: The *domain* of **f** is a subset of all the real numbers on the horizontal number line.

 $Y \subseteq \mathbb{R}_{y}$ is called the **range**: Range f = Rngf

Note: The *range* of **f** is a subset of all the real numbers on the vertical number line.

To officially specify a function, we need

- 1. Name
- 2. Symbol
- 3. Domain
- 4. Correspondence (rule, formula, ...)
- 5. Range

Note, however, that all of this information is usually not initially given and but can be determined. In particular, the **range** of **f** is seldom given.

2

The **range** of **f** may be defined two (2) ways:

1. **Explicitly** – the range is given

(1) Consider **f** defined by the following table:

X	$\mathbf{y} = \mathbf{f}(\mathbf{x})$
3	7
-2	1
4	-3
6	2

Its range is the *vertical* "y" column: Range $f = \{-3, 1, 2, 7\}$. Graphically,

2. Implicitly – the range is defined by

Range $\mathbf{f} = \{\mathbf{y} = \mathbf{f}(\mathbf{x}) \mid \mathbf{x} \in \text{Dom } \mathbf{f} \}$

that is, the set of all y values we obtain by calculating y = f(x) for *all* values in the domain.

If we know the graph of f, its range is the projection of this graph onto the y-axis. If we do NOT know the graph of f AND we can solve y = f(x) for x

 $\mathbf{x} = \mathbf{y}$ stuff

we can see if there are any "y"values that must be excluded from the maximum range which is the set of all vertical real numbers: \mathbb{R}_y There are two (2) ways of excluding a real number y from being in the range of a function **f**:

1. Division by zero: A value for y can NEVER make the denominator zero!

 $\frac{\text{Numerator}}{\text{Denominator} \neq 0}$

2. Negative under an even root: A value for y can NEVER make an expression under an even root negative!

 $\mathbb{E} V \in \mathbb{N}$ Expression $\neq 0$

Note: These restrictions are the same as for the domain **except** they now apply to y values.

4

(2) Find the range of f(x) = 4.

Obviously, the range contains only one element: Range $f = \{4\}$:

(3) Find the range of f(x) = 4x - 9.

From our prior experience with straight lines, we know that the range is **Range f** = \mathbb{R}_y . To see this another way, we can solve $\mathbf{y} = \mathbf{f}(\mathbf{x}) = 4\mathbf{x} - 9$ for \mathbf{x} :

Step	Equation	Reason
0	$\mathbf{y} = \mathbf{f}(\mathbf{x}) = 4\mathbf{x} - 9$	
1	$\mathbf{y} = 4\mathbf{x} - 9$	
2	$\mathbf{y} + 9 = 4\mathbf{x}$	
3	$\frac{\mathbf{y}+9}{4} = \mathbf{x} \text{OR} \mathbf{x} = \frac{\mathbf{y}+9}{4}$	

Since $\mathbf{x} = \frac{\mathbf{y} + 9}{4}$ does not contain any restrictions on \mathbf{y} , we also see Range $\mathbf{f} = \mathbb{R}_{\mathbf{y}}$:

ALL real numbers

(4) Find the range of
$$f(x) = \frac{x+3}{x}$$
.

Since it is NOT obvious what the graph of \mathbf{f} is, we solve $\mathbf{y} = \mathbf{f}$

y	$=\mathbf{f}(\mathbf{x})$	=	$\mathbf{x} + 3$	for	X	:
			Х			

Step	Equation	Reason
0	$\mathbf{y} = \mathbf{f}(\mathbf{x}) = \frac{\mathbf{x} + 3}{\mathbf{x}}$	
1	$\mathbf{y} = \frac{\mathbf{x} + 3}{\mathbf{x}}$	
2	$\mathbf{x}\mathbf{y} = \mathbf{x} + 3$	
3	xy - x = 3	
4	$\mathbf{x}(\mathbf{y}-1)=3$	
5	$\mathbf{x} = \frac{3}{\mathbf{y} - 1}$	

Since $\mathbf{x} = \frac{3}{\mathbf{y}-1}$, we must exclude $\mathbf{y} = 1$ since it makes the denominator zero: **Range f** = $\mathbb{R}_{\mathbf{y}} \setminus \{1\} = (-\infty, 1) \cup (1, +\infty)_{\mathbf{y}}$:

(5) Find the range of
$$\mathbf{f}(\mathbf{x}) = \frac{\mathbf{x}-1}{4\mathbf{x}+1}$$
.

Since it is NOT obvious what the graph of **f** is, we solve $\mathbf{y} = \mathbf{f}(\mathbf{x}) = \frac{\mathbf{x}-1}{4\mathbf{x}+1}$ for \mathbf{x} :

× 1

Step	Equation	Reason
0	$\mathbf{y} = \mathbf{f}(\mathbf{x}) = \frac{\mathbf{x} - 1}{4\mathbf{x} + 1}$	
1	$\mathbf{y} = \frac{\mathbf{x} - 1}{4\mathbf{x} + 1}$	
2	$\mathbf{y}(4\mathbf{x}+1) = \mathbf{x}-1$	
3	$4\mathbf{x}\mathbf{y} + \mathbf{y} = \mathbf{x} - 1$	
4	$4\mathbf{x}\mathbf{y} - \mathbf{x} = -\mathbf{y} - 1$	

5	x(4y-1) = -y-1	
6	$\mathbf{x} = \frac{-\mathbf{y} - 1}{4\mathbf{y} - 1} = \frac{1 + \mathbf{y}}{1 - 4\mathbf{y}}$	

Since $\mathbf{x} = \frac{1+\mathbf{y}}{1-4\mathbf{y}}$, we must exclude $\mathbf{y} = \frac{1}{4}$ since it makes the denominator zero: Range $\mathbf{f} = \mathbb{R}_{\mathbf{y}} \setminus \left\{\frac{1}{4}\right\} = \left(-\infty, \frac{1}{4}\right) \cup \left(\frac{1}{4}, +\infty\right)_{\mathbf{y}}$:

× 1/4