h(x) FUNction Summary TEMPLATE

Quadratic FUNction

MATH by Wilson Your Personal Mathematics Trainer MathByWilson.com

FUNCTION: $h(x) = 4(x+1)^2 - 6 = 4x^2 + 8x - 2$

We first complete the Square:

$$4\mathbf{x}^{2} + 8\mathbf{x} - 2 = 4(\mathbf{x}^{2} + 2\mathbf{x} + []) - 2 + []$$
$$= 4(\mathbf{x}^{2} + 2\mathbf{x} + [1]) - 2 + [-4]$$
$$= 4(\mathbf{x} + 1)^{2} - 6$$

 $f(x) = x^{2}$ A = 4: Vertical Stretch B = 1: No effect C = 1: Horizontal Translation ; 1 unit to the left D = -6: Vertical Translation ; 6 units downward

Note: Since h(x) is "nice", we can find the graph of h(x) before finding all of the FUNction Summary Properties. However, we will still put its graph in Step #10 below. Appropriate calculations are shown at the bottom of the template.

1) DOMAIN:

Dom h = $\mathbb{R}_{\mathbf{x}}$

2) INTERCEPT POINT(S):

y-intercept point: (0,-2) ; graph intersects to y-axis

x - intercept points:
$$\left(-1 - \frac{\sqrt{6}}{2}, 0\right) \approx \left(-2.2247, 0\right); \left(-1 + \frac{\sqrt{6}}{2}, 0\right) \approx \left(0.2247, 0\right); \text{ graph}$$

intersect the x-axis twice

1

3) CONTINUITY AND RELATED TOPICS:

CONT $\mathbf{h} = \mathbb{R}_{\mathbf{x}}$; there are NO breaks in the graph

DISCONT $\mathbf{h} = \emptyset$; Empty Set

Hole h: N/A; NO holes in the graph

Fin _Jp h: N/A; NO stair step behavior (finite jumps)

V_Asy h: N/A; NO vertical asymptotes

Advanced : N/A

POS h = $(-\infty, -2.22)_{x} \cup (0.22, +\infty)_{x}$; h(x) > 0

NEG $\mathbf{h} = (-2.22, 0.22)_{x}$; $\mathbf{h}(\mathbf{x}) < 0$

4) BEHAVIOUR AT (TOWARD) INFINITY:

LIM $h(x) = +\infty$; as the x-values decrease without bound, the cooresponding y-values increase without bound

LIM $h(x) = +\infty$; as the x-values increase without bound, the cooresponding y-values increase without bound

H_Asy **h** : N/A ; NO horizontal asymptotes

5) SYMMETRY (**y**-axis *or* (0,0)):

Even h: No; graph NOT symmetric with respect to y-axis

Odd h : No ; graph NOT symmetric with respect to (0,0)

Other: $\mathbf{x} = -1$; graph symmetric to vertical line $\mathbf{x} = -1$

6) INCREASING AND DECREASING:

INC $\mathbf{h} = [-1, +\infty)_x$; graph going up on this interval

DEC $\mathbf{h} = (-\infty, -1]$; graph going down on this interval

7) RELATIVE MAXIMUM AND/OR MINIMUM POINT(S):

 \mathbf{R}_{MAX} Pt $\mathbf{h}: N/A$; there is NO high point

R_MIN_Pt h: (-1, -6); there is a low point

8) CONCAVITY:

CU $\mathbf{h} = (-\infty, +\infty)_{\mathbf{x}}$; the graph is ALWAYS smiling

CD $\mathbf{h} = N/A$; the graph is NEVER frowning

9) INFLECTION POINT(S):

INF _ Pt h : N/A ; there is NO change from smiling to frowning or vice versa

10) GRAPH:

GRAPH h:

11) ABSOLUTE MAXIMUM AND/OR MINIMUM POINT(S):

 $A_MAX_Pt h$: N/A ; there is NO highest point

A_MIN_Pt h: (-1,-6); there is a lowest point

12) RANGE:

RANGE h = $[-6, +\infty)_y$; the allowable y values

Calculations:

- 1. Intercepts:
 - a. y-intercept: $\mathbf{h}(0) = -2 \Rightarrow (0, -2)$
 - b. x-intercepts: $\mathbf{h}(\mathbf{x}) \stackrel{\text{SET}}{=} 0 \Rightarrow$

$$4(\mathbf{x}+1)^{2}-6=0 \Rightarrow (\mathbf{x}+1)^{2} = \frac{6}{4} \Rightarrow \mathbf{x}+1=\pm\sqrt{\frac{6}{4}}$$
$$\Rightarrow \mathbf{x}=-1\pm\frac{\sqrt{6}}{2} \Rightarrow \left(-1-\frac{\sqrt{6}}{2},0\right); \left(-1+\frac{\sqrt{6}}{2},0\right)$$
$$\Rightarrow \approx \left(-2.22,0\right); (0.22)$$

2. Continuity:

