Infinite Two-sided (One-sided) Limits

 $\lim_{x \to x_0} \mathbf{f}(x) = \mathbf{L} \; ; \; \mathbf{x}_0 \in \mathbb{R} \; ; \; \mathbf{L} = \pm \infty \quad (\text{Diverge to } \pm \infty)$

MATH by Wilson Your Personal Mathematics Trainer MathByWilson.com

When **f** is a fraction and $\mathbf{x} \to \mathbf{x}_0 \in \mathbb{R}$, it may happen that the **numerator** of **f** approaches a non-zero ($\neq 0$) and the **denominator** approaches zero (0):

This implies that the function is increasing (or decreasing) without bound. Check out the Excel table: $\mathbf{f}(\mathbf{x}) = \frac{1}{\mathbf{x} - 2}$; $\mathbf{x} \to 2$

х	y = 1 / (x - 2)
1	-1.00
1.5	-2.00
1.999	-1,000.00
1.999999	-1,000,000.00
1.999999999	-999,999,917.26

Approaching " - Infinity"

2.00000001	999,999,917.26	
2.000001	1,000,000.00	
2.001	1,000.00	
2.5	2.00	
3	1.00	

Approaching " + Infinity"

In "Limit Land", we frequently use

$$\frac{1}{BIG} = SMALL$$
$$\frac{1}{SMALL} = BIG$$

The vertical line $\mathbf{x} = 0$ is called a **vertical asymptote** of **f**.

Example 02: Why is $\lim_{x\to 0} \frac{1}{x} = \mathbb{A}$ (Diverges) ? Solution: We have

$$\mathbf{L}^{-} = \mathbf{L}_{\text{left}} = \lim_{x \to 0^{+}} \frac{1}{x} = -\infty \quad (\text{Diverges to } -\infty)$$
since $\frac{1}{x} \Rightarrow \frac{1}{0(-)}$

$$\mathbf{L}^{+} = \mathbf{L}_{\text{right}} = \lim_{x \to 0^{+}} \frac{1}{x} = +\infty \quad (\text{Diverges to } +\infty)$$
since $\frac{1}{x} \Rightarrow \frac{1}{0(+)}$

$$\mathbf{L}^{-} \neq \mathbf{L}^{+} \Rightarrow \lim_{x \to 0^{+}} \frac{1}{x} = \mathbb{E} \quad (\text{Diverges})$$
Example 02
$$\mathbf{f}(\mathbf{x}) = \mathbf{1}/\mathbf{x}$$

The vertical line $\mathbf{x} = 0$ is called a **vertical asymptote** of **f**.

The vertical line $\mathbf{x} = -2$ is called a **vertical asymptote** of **f**

Example 04: Why is $\lim_{x \to -2} \frac{\mathbf{x} - 2}{(\mathbf{x} + 2)^3} = \text{Undefined (Diverges)}?$ Since $\mathbf{L}^- = \lim_{x \to -2^-} \frac{\mathbf{x} - 2}{(\mathbf{x} + 2)^3} = +\infty$ (Diverges to $+\infty$) $\left\{ \frac{\rightarrow -4}{\rightarrow 0(-)} \right\}$

and

$$\mathbf{L}^{+} = \lim_{\mathbf{x}\to-2^{+}} \frac{\mathbf{x}-2}{(\mathbf{x}+2)^{3}} = -\infty \quad \left(\text{Diverges to } -\infty \right) \left\{ \frac{\rightarrow -4}{\rightarrow 0(+)} \right\}$$

we have
$$\lim_{\mathbf{x}\to-2} \frac{\mathbf{x}-2}{(\mathbf{x}+2)^{3}} = \mathbb{A} \qquad \left(\text{Diverges} \right)$$

Example 05: Find $\lim_{x\to 0} e^{1/x}$, if it exists. Solution:

$$\mathbf{L}^{-} = \underset{\mathbf{x}\to 0^{-}}{\operatorname{Lim}} \mathbf{e}^{1/\mathbf{x}} = ?$$

$$\mathbf{x} \to 0^{-} \Rightarrow \frac{1}{\mathbf{x}} \to -\infty \Rightarrow \mathbf{e}^{1/\mathbf{x}} \to 0 \quad (\text{Converges to } 0)$$

$$\therefore \mathbf{L}^{-} = \underset{\mathbf{x}\to 0^{-}}{\operatorname{Lim}} \mathbf{e}^{1/\mathbf{x}} = 0$$

$$\mathbf{L}^{+} = \underset{\mathbf{x}\to 0^{+}}{\operatorname{Lim}} \mathbf{e}^{1/\mathbf{x}} = ?$$

$$\mathbf{x} \to 0^{+} \Rightarrow \frac{1}{\mathbf{x}} \to +\infty \Rightarrow \mathbf{e}^{1/\mathbf{x}} \to +\infty \quad (\text{Diverges to } +\infty)$$

$$\therefore \mathbf{L}^{+} = \underset{\mathbf{x}\to 0^{-}}{\operatorname{Lim}} \mathbf{e}^{1/\mathbf{x}} = +\infty$$

$$\text{Thus } \underset{\mathbf{x}\to 0}{\operatorname{Lim}} \mathbf{e}^{1/\mathbf{x}} = \mathbb{H} \quad (\text{Diverges })$$

The vertical line $\mathbf{x} = 0$ is called a **vertical asymptote** of \mathbf{f}

Example 06: Why does $\lim_{x\to 0} \log_{10} x$ diverge?

Solution: We have

 $L^{-} = \underset{x \to 0^{-}}{\text{Lim}} \log_{10} \mathbf{x} = \mathcal{A} \quad (\text{Diverges})$ and $L^{+} = \underset{x \to 0^{+}}{\text{Lim}} \log_{10} \mathbf{x} = -\infty \quad (\text{Diverges to } -\infty)$ since we know the graph of $\log_{10} \mathbf{x}$. $\therefore \underset{x \to 0}{\text{Lim}} \log_{10} \mathbf{x} = \mathcal{A} \quad \text{Diverges}$ **Example 06** $\mathbf{f}(\mathbf{x}) = \mathbf{ln}(\mathbf{x})/\mathbf{ln}(\mathbf{10})$

The vertical line $\mathbf{x} = 0$ is called a **vertical asymptote** of \mathbf{f}

Example 07: Why is $\lim_{x \to \frac{\pi}{2}} \tan x$ undefined?

Solution: We know from the graph of the tangent function,

The line $\mathbf{x} = \frac{\pi}{2}$ is *just* one of an infinite number of vertical asymptotes the tangent function has.

We now present the formal definition of a vertical asymptote:

Definition: Let **f** be a function. The vertical line $\mathbf{x} = \mathbf{x}_0$ is called a **vertical asymptote** of **f** if *at least one* of the following is true:

- 1. $\lim_{x \to x_0^-} \mathbf{f}(x) = -\infty$
- 2. $\lim_{x\to x_0^-} \mathbf{f}(\mathbf{x}) = +\infty$
- 3. $\lim_{\mathbf{x}\to\mathbf{x}_0^+}\mathbf{f}(\mathbf{x})=-\infty$
- 4. $\lim_{\mathbf{x}\to\mathbf{x}_0^+}\mathbf{f}(\mathbf{x})=+\infty$

In the next example we will find all the **discontinuities** for a particular function **f**.

Example 08: Given $\mathbf{f}(\mathbf{x}) = \frac{\mathbf{x}^3 - 4\mathbf{x}^2 - 12\mathbf{x}}{\mathbf{x}^2 - 10\mathbf{x} + 24}$, find all holes, finite jumps, and vertical

asymptotes.

Solution: First of all, recall that rational functions do NOT have finite jumps. Now for the holes and vertical asymptotes, if any. We have

Dom f =
$$\mathbb{R}_{x} \setminus \{4, 6\}$$
 since $0 = x^{2} - 10x + 24 = (x - 4)(x - 6)$

and also

Cont
$$\mathbf{f} = \mathbf{Dom} \ \mathbf{f} = \mathbb{R}_x \setminus \{4, 6\}$$

There are two (2) breaks in the graph:

 $\therefore \mathbf{x} = 4 \text{ is a vertical asymptote!}$ Similarly $\lim_{\mathbf{x} \to 4^+} \mathbf{f}(\mathbf{x}) = +\infty$

x = 6:

$$\lim_{x \to 6^{-}} \mathbf{f}(\mathbf{x}) = \lim_{x \to 6^{-}} \frac{\mathbf{x}^{3} - 4\mathbf{x}^{2} - 12\mathbf{x}}{\mathbf{x}^{2} - 10\mathbf{x} + 24} = \lim_{x \to 6^{-}} \frac{\mathbf{x}(\mathbf{x} - 6)(\mathbf{x} + 2)}{(\mathbf{x} - 4)(\mathbf{x} - 6)}$$

$$= \lim_{x \to 6^{-}} \frac{\mathbf{x}(\mathbf{x} + 2)}{(\mathbf{x} - 4)} \quad (\mathbf{x} \neq 4, 6)$$

$$= 24$$
Similarly $\lim_{x \to 6^{+}} \mathbf{f}(\mathbf{x}) = 24$

$$\therefore \text{ the point } (6, 24) \text{ is a hole!}$$

The graph shows both the vertical asymptote line and a "x" for the hole:

