Infinite Two-sided (One-sided) Limits

Lim $f(x) = L$; $x_0 \in \mathbb{R}$; $L = \pm \infty$ (Diverge to $\pm \infty$)

MATH by Wilson Your Personal Mathematics Trainer MathByWilson.com MATH by Wilson 7 MathByWilson.com

When **f** is a fraction and $\mathbf{x} \to \mathbf{x}_0 \in \mathbb{R}$, it may happen that the **numerator** of **f** approaches a non-zero $(\neq 0)$ and the **denominator** approaches zero (0) :

$$
\rightarrow \neq 0
$$

\n
$$
\rightarrow 0 \text{ (either "+'" or "-" only)}
$$

This implies that the function is increasing (or decreasing) without bound. Check out the Excel table: $(\mathbf{x}) = \frac{1}{\sqrt{2}}$; $\mathbf{x} \rightarrow 2$ 2 $f(x) = \frac{1}{2}$; x x $=\frac{1}{\sqrt{2}}$; $x \rightarrow 2$ $\overline{}$

Approaching " - Infinity"

Approaching " + Infinity"

In "Limit Land" , we frequently use

$$
\frac{1}{\text{BIG}} = \text{SMALL}
$$

$$
\frac{1}{\text{SMALL}} = \text{BIG}
$$

The vertical line $x = 0$ is called a vertical asymptote of f.

Example 02: Why is 0 Lim $\frac{1}{\mathbf{x}} = \mathbb{E}(\text{Diverges})$? $\rightarrow 0$ **x** $=$ \exists (Diverges) ? Solution: We have

Example 02: Why is
$$
\lim_{x\to 0} \frac{1}{x} = \frac{\pi}{2}
$$
 (Diverges) ?
\nSolution: We have
\n
$$
L = L_{\text{left}} = \lim_{x\to 0} \frac{1}{x} = -\infty \quad \text{(Diverges to } -\infty)
$$
\n
$$
\text{since } \frac{1}{x} \Rightarrow \frac{1}{0(-)}
$$
\n
$$
L^+ = L_{\text{right}} = \lim_{x\to 0^+} \frac{1}{x} = +\infty \quad \text{(Diverges to } +\infty)
$$
\n
$$
\text{since } \frac{1}{x} \Rightarrow \frac{1}{0(+)}
$$
\n
$$
L^- \neq L^+ \Rightarrow \lim_{x\to 0} \frac{1}{x} = \frac{\pi}{2} \quad \text{(Diverges)}
$$
\n
$$
\text{Example 02}
$$
\n
$$
f(x) = 1/x
$$

The vertical line $x = 0$ is called a vertical asymptote of f.

The vertical line $x = -2$ is called a vertical asymptote of f

Example 04: Why is $\lim_{x \to -2} \frac{x-2}{(x+2)^3}$ = Undefined (Diverges)?

Since \mathbf{L}^- = $\lim_{x \to -2^-} \frac{x-2}{(x+2)^3}$ = $+\infty$ (Diverges to $+\infty$) $\left\{\frac{\to -4}{\to 0(-)}\right\}$ $\int_{2}^{\infty} \frac{x-2}{(x+2)^3}$ = Undefined $\lim_{x \to -2} \frac{x-2}{(x+2)^3} = \text{Undefined (Diverges)}$ $\rightarrow -2$ (\mathbf{x}) $\overline{}$ $=$ $^{+}$? Lim $\frac{x-2}{(x+2)^3}$ = Undefined (Diverges)?
 $\frac{x-2}{(x+2)^3}$ = + ∞ (Diverges to + ∞) $\left\{\frac{\rightarrow -4}{\rightarrow 0(-)}\right\}$
 \Rightarrow = - ∞ (Diverges to - ∞) $\left\{\frac{\rightarrow -4}{\rightarrow -4}\right\}$ Why is $\lim_{x \to -2} \frac{x-2}{(x+2)^3}$ = Undefined (Diverges)?
 $\lim_{x \to -2} \frac{x-2}{(x+2)^3} = +\infty$ (Diverges to $+\infty$) $\left\{ \frac{\rightarrow -4}{\rightarrow 0(-)} \right\}$
 $\frac{x-2}{(x+2)^3} = -\infty$ (Diverges to $-\infty$) $\left\{ \frac{\rightarrow -4}{\rightarrow 0(+)} \right\}$
 $\lim_{x \to 2} \frac{x-2}{(x+2)^3}$ is Lim $\frac{x-2}{x+2}$ = Undefined (Diverges)?
 $\frac{x-2}{(x+2)^3} = +\infty$ (Diverges to $+\infty$) $\left\{\frac{\rightarrow -4}{\rightarrow 0(-)}\right\}$
 $\frac{2}{(x+2)^3} = -\infty$ (Diverges to $-\infty$) $\left\{\frac{\rightarrow -4}{\rightarrow 0(+)}\right\}$
 $\frac{x-2}{(x+2)^3} = \frac{\pi}{6}$ (Diverges) $\frac{11}{2}$ $(\mathbf{x} + 2)^3$ Since $\mathbf{L}^{\text{-}} = \mathbf{Lim} \left(\frac{\mathbf{x} - 2}{\mathbf{x}^3} \right) = +\infty \quad \text{(Diverges to } +\infty) \left\{ \frac{\rightarrow -4}{\mathbf{x}^2} \right\}$ $L^{-} = \lim_{x \to -2^{-}} \frac{x-2}{(x+2)^3} = +\infty$ (Diverges to $+\infty$) $\left\{ \frac{\to -4}{\to 0(-)} \right\}$ $\overline{\mathbf{X}}$ $\overline{}$ \rightarrow -2 -2 is $(\mathbf{D}^{\mathsf{irr}})$ $\rightarrow -4$ $=\lim_{x\to 2^{-}}\frac{x-2}{(x-2)^3}$ = + ∞ (Diverges to + ∞) $\left\{\frac{\rightarrow -4}{(x-2)^3}\right\}$ $\overline{+2}$ ³ – $+\infty$ (Diverges to $+\infty$) $\left(\overline{\rightarrow 0(-)}\right)$

and

$$
\mathbf{L}^{+} = \lim_{\mathbf{x} \to -2^{+}} \frac{\mathbf{x} - 2}{(\mathbf{x} + 2)^{3}} = -\infty \quad \text{(Diverges to } -\infty) \left\{ \frac{\rightarrow -4}{\rightarrow 0(+)} \right\}
$$
\nwe have
$$
\lim_{\mathbf{x} \to -2} \frac{\mathbf{x} - 2}{(\mathbf{x} + 2)^{3}} = \mathbb{Z} \quad \text{(Diverges)}
$$

 $= -2$ is called a vertical asymptote of f

Example 05: Find $\mathbf{Lim}~\mathbf{e}^{\mathbf{1}/\mathbf{2}}$ 0 x **Lim** $e^{1/x}$, if it exists. Solution:

mple 05: Find
$$
\lim_{x\to 0} e^{1/x}
$$
, if it exists.
\n
$$
L^{-} = \lim_{x\to 0^{-}} e^{1/x} = ?
$$
\n
$$
x \to 0^{-} \Rightarrow \frac{1}{x} \to -\infty \Rightarrow e^{1/x} \to 0 \quad \text{(Converges to 0)}
$$
\n
$$
\therefore L^{-} = \lim_{x\to 0^{+}} e^{1/x} = 0
$$
\n
$$
L^{+} = \lim_{x\to 0^{+}} e^{1/x} = ?
$$
\n
$$
x \to 0^{+} \Rightarrow \frac{1}{x} \to +\infty \Rightarrow e^{1/x} \to +\infty \quad \text{(Diverges to + ∞)}
$$
\n
$$
\therefore L^{+} = \lim_{x\to 0^{-}} e^{1/x} = \frac{1}{4} \quad \text{(Diverges)}
$$

The vertical line $x = 0$ is called a **vertical asymptote** of **f**

Example 06: Why does $\lim_{x\to 0} \log_{10} x$ diverge?

Solution: We have

lnple 06: Why does **Lim**
$$
\log_{10} x
$$
 diverge?
\n**on:** We have
\n
$$
L^{-} = \lim_{x \to 0^{-}} \log_{10} x = \exists \quad (\text{Diverges})
$$
\nand
\n
$$
L^{+} = \lim_{x \to 0^{+}} \log_{10} x = -\infty \quad (\text{Diverges to } -\infty)
$$
\nsince we know the graph of $\log_{10} x$.
\n
$$
\therefore \lim_{x \to 0} \log_{10} x = \exists \quad \text{Diverges}
$$

The vertical line $x = 0$ is called a **vertical asymptote** of **f**

Example 07: Why is tan x $\lim_{n \to \infty} \tan x$ $\rightarrow \frac{\pi}{4}$ undefined?

2 Solution: We know from the graph of the tangent function,

The line $x = \frac{\pi}{2}$ π $\frac{1}{\sqrt{2}}$ is just one of an infinite number of vertical asymptotes the tangent function has.

We now present the formal definition of a vertical asymptote:

Definition: Let **f** be a function. The vertical line $\mathbf{x} = \mathbf{x}_0$ is called a vertical asymptote of f if at least one of the following is true:

- 1. 0 $(x) =$ $\mathbf{x} \rightarrow \mathbf{x}_0$ ⁻ Lim $f(x) = -\infty$
- 2. Lim $f(x) = +\infty$ $\mathbf{x} \rightarrow \mathbf{x}_0^-$
- 3. 0 $\lim_{\longrightarrow x_0^+} f(x) = -\infty$ $\lim_{x\to x_0^+} f(x) =$
- 4. 0 $\lim_{\longrightarrow x_0^+} f(x) = +\infty$ $\lim_{x\to x_0^+} f(x) =$

In the next example we will find all the discontinuities for a particular function f.

Example 08: Given $3 \Delta x^2$ $f(x) = \frac{x^3 - 4x^2 - 12x}{x^2 - 10x + 24}$ $\overline{10x + 24}$ $f(x) = \frac{x^3 - 4x^2 - 12x}{x^2 - 12x},$ $\overline{x^2 - 10x +}$ $-4x^2-12$ $=\frac{\mathbf{A} + \mathbf{A} + \mathbf{A} + \mathbf{A} + \mathbf{A}}{\mathbf{x}^2 - 10\mathbf{x} + 2\mathbf{A}}$, find all holes, finite jumps, and vertical the discontinuities for a particular function f.
 $\frac{x^2 - 12x}{10x + 24}$, find all holes, finite jumps, and vertical

nal functions do NOT have finite jumps. Now for

ny. We have

ce $0 = x^2 - 10x + 24 = (x - 4)(x - 6)$

{4,6}

asymptotes.

Solution: First of all, recall that rational functions do NOT have finite jumps. Now for the holes and vertical asymptotes, if any. We have

Dom
$$
f = \mathbb{R}_x \setminus \{4, 6\}
$$
 since $0 = x^2 - 10x + 24 = (x - 4)(x - 6)$

and also

$$
Cont\ f=Dom\ f=\mathbb{R}_{x}\setminus\{4,6\}
$$

There are two (2) breaks in the graph:

Example we will find all the discontinuities for a particular function **f**.

\nGiven
$$
f(x) = \frac{x^3 - 4x^2 - 12x}{x^2 - 10x + 24}
$$
, find all holes, finite jumps, and vertical to fall, recall that rational functions do NOT have finite jumps. Now for vertical asymptotes, if any. We have

\n
$$
f = \mathbb{R}_x \setminus \{4, 6\}
$$
 since
$$
0 = x^2 - 10x + 24 = (x - 4)(x - 6)
$$

\nIso

\n
$$
f = \text{Dom } f = \mathbb{R}_x \setminus \{4, 6\}
$$

\n(2) breaks in the graph:

\n
$$
x = 4:
$$

\nLim
$$
f(x) = \lim_{x \to 4^-} \frac{x^3 - 4x^2 - 12x}{x^2 - 10x + 24} = \lim_{x \to 4^-} \frac{x(x - 6)(x + 2)}{(x - 4)(x - 6)}
$$

\n
$$
= \lim_{x \to 4^-} \frac{x(x + 2)}{(x - 4)}
$$

$$
(x \neq 4, 6)
$$

\n
$$
= -\infty
$$

\n
$$
\therefore x = 4
$$
 is a vertical asymptote!

Similarily $\lim_{x \to 4^+} f(x) = +\infty$ \therefore **x** = 4 is a vertical asymptote!

$$
x = 6:
$$

\n
$$
\lim_{x \to 6^{-}} f(x) = \lim_{x \to 6^{-}} \frac{x^3 - 4x^2 - 12x}{x^2 - 10x + 24} = \lim_{x \to 6^{-}} \frac{x(x - 6)(x + 2)}{(x - 4)(x - 6)}
$$

\n
$$
= \lim_{x \to 6^{-}} \frac{x(x + 2)}{(x - 4)} \quad (x \neq 4, 6)
$$

\n
$$
= 24
$$

\nSimilarly $\lim_{x \to 6^{+}} f(x) = 24$
\n∴ the point (6, 24) is a hole!

The graph shows both the vertical asymptote line and a "x" for the hole:

