Rates of Change

MATH by Wilson Your Personal Mathematics Trainer MathByWilson.com

Recall that there are two (2) types of rates of change:

- 1. Average Rate of Change with respect to an interval Difference Quotient
- 2. Instantaneous Rate of Change with respect to a *point* First Derivative

Presently, we are mostly considering instantaneous rates of change, that is, derivative related changes:

Given
$$\mathbf{f}(\mathbf{x})$$
, find

1. Average Rate of Change: $\frac{f(x+\Delta x) - f(x)}{\Delta x}$ 2. Instantaneous Rate of Change: $f'(x) = \lim_{\Delta x \to 0} \frac{f(x+\Delta x) - f(x)}{\Delta x}$

Example 01: Given $f(t) = \frac{2t}{t+2}$, find

1. Average velocity on
$$\begin{bmatrix} 2, 2.25 \end{bmatrix}$$

2. Instantaneous velocity at $\mathbf{t} = 2$

Solution:

Average Velocity:
$$\frac{\mathbf{f}(\mathbf{t}_0 + \Delta \mathbf{t}) - \mathbf{f}(\mathbf{t}_0)}{\Delta \mathbf{t}} = \frac{\mathbf{f}(\mathbf{t}_1) - \mathbf{f}(\mathbf{t}_0)}{\mathbf{t}_1 - \mathbf{t}_0}$$
where $[\mathbf{t}_0, \mathbf{t}_1]$; $\Delta \mathbf{t} = \mathbf{t}_1 - \mathbf{t}_0$
 $\mathbf{t}_0 = 2$; $\mathbf{t}_1 = 2.25 \Rightarrow \frac{\mathbf{f}(\mathbf{t}_1) - \mathbf{f}(\mathbf{t}_0)}{\mathbf{t}_1 - \mathbf{t}_0} = \frac{\mathbf{f}(2.25) - \mathbf{f}(2)}{2.25 - 2}$
 $= \dots = \frac{4}{17} \mathbf{ft} / \sec$

Instantaneous Velocity: $\mathbf{f}'(\mathbf{t})\Big|_{\mathbf{t}=\mathbf{t}_0}$

$$\mathbf{f}'(\mathbf{t}) = 2\frac{(\mathbf{t}+2)^* 1 - \mathbf{t}^* 1}{(\mathbf{t}+2)^2} = \frac{4}{(\mathbf{t}+2)^2}$$
$$\mathbf{f}'(2) = \mathbf{f}'(\mathbf{t})\Big|_{\mathbf{t}=2} = \frac{2}{8} = \frac{1}{4} \mathbf{f} \mathbf{t} / \sec$$

Example 02: Given $\mathbf{T}(\mathbf{t}) = 6 + 3\mathbf{t} + \frac{1}{\mathbf{t}+2}$ $\mathbf{t} \in [0,10]$ where $\mathbf{T}(\mathbf{t})$ in degrees C° and t in minutes, find $\mathbf{T}'(\mathbf{t})$ at t = 1.

Solution:

Calculate Generic Derivative:

Evaluate Generic Derivative:

$$\mathbf{T}'(1) = 3 - \frac{1}{(1+2)^2} = 3 - \frac{1}{9} = 2\frac{8}{9}\frac{\mathbf{C}}{\min}$$

Example 3: Boyle's Law for Gases

Boyle's Law: PV = C = constant P(t) = pressure; V(t) = volumeNote: P(t)V(t) = C; C depends upon the gas under consideration Note: There must always be enough data present to find C:Given $t_0 \Rightarrow$

 $\mathbf{C} = \mathbf{P}(\mathbf{t}_0)\mathbf{V}(\mathbf{t}_0)$ Find $\mathbf{V}'(\mathbf{t})\Big|_{\mathbf{t}=2.5}$ when $\mathbf{P}(\mathbf{t}) = 10 + 4\mathbf{t} \frac{\mathbf{cm}}{\mathbf{Hg}} \mathbf{t} \in [0, 10]$ with $\mathbf{V}(0) = 20 \text{ cm}^3$ and $\mathbf{P}(0) = 10$

Solution:

We have
$$\mathbf{C} = \mathbf{V}(0)\mathbf{P}(0) = 20*10 = 300 \frac{\mathbf{cm}^4}{\mathbf{Hg}}$$
 so that

$$\mathbf{V}(\mathbf{t}) = \frac{300}{10+4\mathbf{t}} \,\mathbf{cm}^3 = 300 (10+4\mathbf{t})^{-1} \,\mathbf{cm}^3 \quad \mathbf{t} \in [0,10]$$
$$\mathbf{V}'(\mathbf{t}) = -300 (10+4\mathbf{t})^{-2} (4) = -\frac{1200}{(10+4\mathbf{t})^2} \,\frac{\mathbf{cm}^3}{\min}$$
$$\mathbf{V}'(2.5) = -\frac{1200}{(10+10)^2} = -\frac{1200}{400} = -3 \,\frac{\mathbf{cm}^3}{\min}$$

Definition: Let $\mathbf{s}(\mathbf{t})$ represent the position of a particle at time \mathbf{t} . The velocity of the particle is given by $\mathbf{v}(\mathbf{t}) = \mathbf{s}'(\mathbf{t})$. **Note:** $\mathbf{v}(\mathbf{t}) > 0 \Rightarrow$ motion upward ; $\mathbf{v}(\mathbf{t}) < 0 \Rightarrow$ motion downward The acceleration of a particle is given by $\mathbf{a}(\mathbf{t}) = \mathbf{v}'(\mathbf{t}) = \mathbf{s}''(\mathbf{t})$

Example 04: A particle moving vertically has a position defined by

$$s(t) = 160t - 16t^2$$
 ft

Find its velocity, acceleration, the maximum height it will reach, and its velocity when it hits the ground.

Solution:

We have

$$v(t) = s'(t) = 160 - 32t \text{ ft / sec}$$

 $a(t) = v'(t) = s''(t) = -32 \text{ ft / sec}^2$

Note the v(3) = +54 so the motion is upward and v(7) = -54 so the motion is downward. The velocity is zero at its maximum height:

$$0 = \mathbf{v}(\mathbf{t}) = \mathbf{s}'(\mathbf{t}) = 160 - 32\mathbf{t} \, \mathbf{ft} \, / \sec \Rightarrow \mathbf{t} = 5 \sec \mathbf{t}$$

Thus, the maximum height is $\mathbf{s}(5) = 160(5) - 16(5)^2 = 400$ ft. At the ground $0 = \mathbf{s}(\mathbf{t}) = 160\mathbf{t} - 16\mathbf{t}^2$ ft $\Rightarrow \mathbf{t} = 10$ sec so that $\mathbf{v}(10) = -160$ ft/sec