Equations – Quadratic: Solve

Goal: Solve various Quadratic Equations using various techniques.

(1) **Question**: Solve the equation $4x^2 - 81 = 0$. **Solution:**

Note: $\mathbf{a} = 4$; $\mathbf{b} = 0$; $\mathbf{c} = -81$

Step	Equation	Reason
0	$4\mathbf{x}^2 - 81 = 0$	
1	$4\mathbf{x}^2 = 81$	
2	$\mathbf{x}^2 = \frac{81}{4}$	
3	$\mathbf{x} = \pm \sqrt{\frac{81}{4}} = \pm \frac{9}{2}$	2 Solutions

Graph of solution set:

Note: there are certainly other ways to solve this and other equations.

(2) **Question**: The solution(s) of the equation $\frac{\mathbf{x}^2}{9} + \frac{1}{16} = 0$ satisfies

A) One real solution ("root of multiplicity two")

B) Two real solutions ("distinct solutions")

C) Two complex solutions (NOT conjugate pairs)

D) Two complex solutions (Conjugate pairs)

Solution:

Using the discriminate $\mathbf{D} = \mathbf{b}^2 - 4\mathbf{ac}$ with $\mathbf{a} = \frac{1}{9}$; $\mathbf{b} = 0$; $\mathbf{c} = \frac{1}{16}$, we have

$$\mathbf{D} = 0 - 4 \left(\frac{1}{9}\right) \left(\frac{1}{16}\right) < 0$$

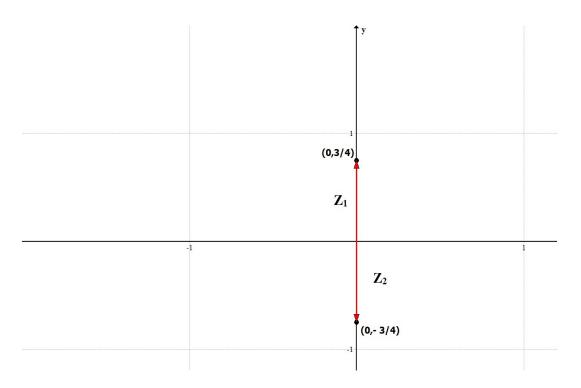
So that the answer is "D since complex solutions *must* occur in conjugate pairs

OR

we can just solve the equation and get the same result:

Step	Equation	Reason
0	$\frac{\mathbf{x}^2}{9} + \frac{1}{16} = 0$	
1	$\frac{\mathbf{x}^2}{9} = -\frac{1}{16}$	
2	$\mathbf{x}^2 = -\frac{9}{16}$	
3	$\mathbf{x} = \pm \sqrt{-\frac{9}{16}}$	
4	$\mathbf{x} = \pm \sqrt{\frac{9}{16}} * \sqrt{-1}$	
5	$\mathbf{x} = \pm \frac{3}{4}\mathbf{i}$	

Graph of the solution set:



(3) **Question**: Find the *smallest* solution of the equation $x^2 - 14x + 48 = 0$. **Solution**:

Note: $\mathbf{a} = 1$; $\mathbf{b} = -14$; $\mathbf{c} = 48$

Three (3) solutions are given below:

Factor:

Step	Equation	Reason
0	$\mathbf{x}^2 - 14\mathbf{x} + 48 = 0$	
1	$(\mathbf{x}-6)(\mathbf{x}-8)=0$	
2	$x - 6 = 0 \mid x - 8 = 0$	
	$\mathbf{x} = 6 \qquad \mathbf{x} = 8$	

Complete the Square:

Step	Equation	Reason
0	$\mathbf{x}^2 - 14\mathbf{x} + 48 = 0$	
	$\mathbf{x}^2 - 14\mathbf{x} = -48$	x-coeff: -14
1		1/2 (x-coeff): -7
		$[1/2(x-coeff)]^2$: 49
2	$\mathbf{x}^2 - 14\mathbf{x} + 49 = -48 + 49$	

3	$\left(\mathbf{x}-7\right)^2=1$	
4	$\mathbf{x} - 7 = \pm 1$	
5	$\begin{vmatrix} \mathbf{x} - 7 = -1 \\ \mathbf{x} = 6 \end{vmatrix} \begin{vmatrix} \mathbf{x} - 7 = 1 \\ \mathbf{x} = 8 \end{vmatrix}$	

Quadratic Formula - QF:

Step	Equation	Reason
0	$\mathbf{x}^2 - 14\mathbf{x} + 48 = 0$	
1	$\mathbf{x} = \frac{-\mathbf{b} \pm \sqrt{\mathbf{b}^2 - 4\mathbf{ac}}}{2\mathbf{a}}$	
2	$\mathbf{x} = \frac{-[-14] \pm \sqrt{[-14]^2 - 4[1][48]}}{2[1]}$	
3	$\mathbf{x} = \frac{14 \pm \sqrt{196 - 192}}{2}$	
4	$\mathbf{x} = \frac{14 \pm \sqrt{4}}{2}$	
5	$\mathbf{x} = \frac{14 \pm 2}{2}$	
6	$\mathbf{x} = \frac{14 - 2}{2} \begin{vmatrix} \mathbf{x} = \frac{14 + 2}{2} \\ \mathbf{x} = 6 \end{vmatrix}$ $\mathbf{x} = 8$	

Graph of the solution set:

Answer is x = 6.

(4) **Question**: Find the *sum* of the solutions of the equation $10x^2 - 11x = 6$. **Solution**:

Standard Form:
$$10x^2 - 11x - 6 = 0$$
 so that $a = 10$; $b = -11$; $c = -6$

Again, we find three (s) solutions:

Factor:

Step	Equation		Reason
0	$10x^2 - 11x - 6 = 0$		
1	$(5\mathbf{x}+2)(2\mathbf{x}$	(x-3)=0	
2	$5x + 2 = 0$ $5x = -2$ $x = -\frac{2}{5}$	$\begin{vmatrix} 2x - 3 = 0 \\ 2x = 3 \\ x = \frac{3}{2} \end{vmatrix}$	

Complete the Square:

Step	Equation	Reason
0	$10x^2 - 11x - 6 = 0$	
1	$10\left[\mathbf{x}^2 - \frac{11}{10}\mathbf{x}\right] = 6$	x-coeff: $-\frac{11}{10}$ 1/2 (x-coeff): $-\frac{11}{20}$ [1/2(x-coeff)] ² : $\frac{121}{400}$
2	$10\left[\mathbf{x}^2 - \frac{11}{10}\mathbf{x} + \frac{121}{400}\right] = 6 + 10 * \frac{121}{400}$	
3	$10\left[\mathbf{x} - \frac{11}{20}\right]^2 = \frac{361}{40}$	
4	$\left[\mathbf{x} - \frac{11}{20}\right]^2 = \frac{361}{400}$	
5	$\mathbf{x} - \frac{11}{20} = \pm \sqrt{\frac{361}{400}} = \pm \frac{19}{20}$	
6	$\begin{vmatrix} \mathbf{x} - \frac{11}{20} = -\frac{19}{20} \\ \mathbf{x} = \frac{11}{20} - \frac{19}{20} \\ \mathbf{x} = -\frac{8}{20} = -\frac{2}{5} \end{vmatrix} \begin{vmatrix} \mathbf{x} - \frac{11}{20} = \frac{19}{20} \\ \mathbf{x} = \frac{11}{20} + \frac{19}{20} \\ \mathbf{x} = \frac{30}{20} = \frac{3}{2} \end{vmatrix}$	

Quadratic Formula - QF:

Step	Equation	Reason
0	$10x^2 - 11x - 6 = 0$	
1	$\mathbf{x} = \frac{-\mathbf{b} \pm \sqrt{\mathbf{b}^2 - 4\mathbf{a}\mathbf{c}}}{2\mathbf{a}}$	
2	$\mathbf{x} = \frac{-[-11] \pm \sqrt{[-11]^2 - 4[10][-6]}}{2[10]}$	
3	$\mathbf{x} = \frac{11 \pm \sqrt{121 + 240}}{20}$	
4	$\mathbf{x} = \frac{11 \pm \sqrt{361}}{20}$	
5	$\mathbf{x} = \frac{11 \pm 19}{20}$	
6	$\mathbf{x} = \frac{11 - 19}{20} \mathbf{x} = \frac{11 + 19}{20}$	
	$\mathbf{x} = -\frac{5}{2} \qquad \mathbf{x} = \frac{3}{2}$	

Graph of the solution set:

The **sum** is Sum
$$= -\frac{2}{5} + \frac{3}{2} = -\frac{2 \cdot 2}{5 \cdot 2} + \frac{3 \cdot 5}{2 \cdot 5} = -\frac{4}{10} + \frac{15}{10} = \frac{11}{10}$$

(5) **Question**: Find the *largest* solution $\mathbf{x}_{\text{Large}}$ of the equation $3\mathbf{x}^2 + 2\mathbf{x} - 4 = 0$. **Solution**:

Note:
$$a = 3$$
; $b = 2$; $c = -4$

Only two (2) solutions are given:

Factor:

Doesn't factor "nicely"! UGLY!

Complete the Square:

Step	Equation	Reason
0	$3\mathbf{x}^2 + 2\mathbf{x} - 4 = 0$	
	$3\left[\mathbf{x}^2 + \frac{2}{3}\mathbf{x}\right] = 4$	x-coeff: $\frac{2}{3}$
1		$1/2$ (x-coeff): $\frac{1}{3}$
		$[1/2(x-coeff)]^2$: $\frac{1}{9}$
2	$3\left[x^2 + \frac{2}{3}x + \frac{1}{9}\right] = 4 + 3 * \frac{1}{9}$	
3	$3\left[\mathbf{x} + \frac{1}{3}\right]^2 = \frac{13}{3}$	
4	$\left[\mathbf{x} + \frac{1}{3}\right]^2 = \frac{13}{9}$	
5	$\mathbf{x} + \frac{1}{3} = \pm \sqrt{\frac{13}{9}} = \pm \frac{\sqrt{13}}{3}$	
	$\left\ \mathbf{x} + \frac{1}{3} = -\frac{\sqrt{13}}{3} \right\ \mathbf{x} + \frac{1}{3} = \frac{\sqrt{13}}{3}$	
6	$\mathbf{x} = -\frac{1+\sqrt{13}}{3}$ $\mathbf{x} = \frac{-1+\sqrt{13}}{3}$	
	$\mathbf{x} \approx -1.5352 \qquad \mathbf{x} \approx 0.8685$	

Quadratic Formula - QF:

Step	Equation	Reason
0	$3\mathbf{x}^2 + 2\mathbf{x} - 4 = 0$	
1	$\mathbf{x} = \frac{-\mathbf{b} \pm \sqrt{\mathbf{b}^2 - 4\mathbf{ac}}}{2\mathbf{a}}$	
2	$\mathbf{x} = \frac{-[2] \pm \sqrt{[-2]^2 - 4[3][-4]}}{2[3]}$	
3	$\mathbf{x} = \frac{-2 \pm \sqrt{4 + 48}}{6}$	

4	$\mathbf{x} = \frac{-2 \pm \sqrt{52}}{6} = \frac{-2 \pm 2\sqrt{13}}{6}$	
5	$\mathbf{x} = \frac{-1 \pm \sqrt{13}}{3}$	
6	$\mathbf{x} = \frac{-1 - \sqrt{13}}{3}$ $\mathbf{x} \approx -1.5352$ $\mathbf{x} \approx 0.8685$	

Graph of the solution set:

Therefore
$$\mathbf{x}_{\text{Large}} = \frac{-1 + \sqrt{13}}{3}$$
.

(6) **Question**: Is there a *largest* solution $\mathbf{x}_{\text{Large}}$ of the equation $\mathbf{x}^2 + 3\mathbf{x} + 5 = 0$? **Solution:**

Note:
$$a = 1$$
; $b = 3$; $c = 5$

Ugly again!

Factor:

Doesn't factor "nicely"! UGLY!

Complete the Square:

Step	Equation	Reason
0	$\mathbf{x}^2 + 3\mathbf{x} + 5 = 0$	
1	$\mathbf{x}^2 + 3\mathbf{x} = -5$	x-coeff: 3 $1/2$ (x-coeff): $\frac{3}{2}$ $[1/2(x-coeff)]^2$: $\frac{9}{4}$
2	$x^2 + 3x + \frac{9}{4} = -5 + \frac{9}{4}$	
3	$\left(\mathbf{x} + \frac{3}{2}\right)^2 = -\frac{11}{4}$	
4	$\mathbf{x} + \frac{3}{2} = \pm \sqrt{-\frac{11}{4}}$	
5	$\mathbf{x} + \frac{3}{2} = \pm \frac{\sqrt{-11}}{2} = \pm \frac{\sqrt{11} \mathbf{i}}{2}$	
6	$\begin{vmatrix} \mathbf{x} + \frac{3}{2} = -\frac{\sqrt{11} \mathbf{i}}{2} \\ \mathbf{x} = -\frac{3 + \sqrt{11} \mathbf{i}}{2} \end{vmatrix} \mathbf{x} + \frac{3}{2} = \frac{\sqrt{11} \mathbf{i}}{2} \\ \mathbf{x} = \frac{-3 + \sqrt{11} \mathbf{i}}{2} \end{vmatrix}$	

Quadratic Formula - QF:

Step	Equation	Reason
0	$\mathbf{x}^2 + 3\mathbf{x} + 5 = 0$	
1	$\mathbf{x} = \frac{-\mathbf{b} \pm \sqrt{\mathbf{b}^2 - 4\mathbf{ac}}}{2\mathbf{a}}$	
2	$\mathbf{x} = \frac{-[3] \pm \sqrt{[3]^2 - 4[1][5]}}{2[1]}$	
3	$\mathbf{x} = \frac{-3 \pm \sqrt{9 - 20}}{2}$	
4	$\mathbf{x} = \frac{-3 \pm \sqrt{-11}}{2}$	
5	$\mathbf{x} = \frac{-3 \pm \sqrt{11} \ \mathbf{i}}{2}$	

6
$$\mathbf{x} = \frac{-3 - \sqrt{11} \, \mathbf{i}}{2} \, \mathbf{x} = \frac{-3 + \sqrt{11} \, \mathbf{i}}{2}$$

There is no "largest" solution since the solutions are complex numbers.

Graph of the solution set:

