Quadratic Equations – Applications

MATH by Wilson Your Personal Mathematics Trainer MathByWilson.com

Various Word Problems, Applications, ...:

Geometry - Rectangle

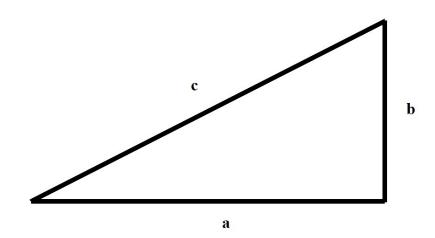
(1) Given that the perimeter "P" of a rectangle is 72" and its area "A" is 224 sq ", find its length l and its width w.

Fundamental facts: P = 2l + 2w; A = l*w

Substitute for the "knowns":

 $224 = \mathbf{l} * \mathbf{w}$ $72 = 2\mathbf{l} + 2\mathbf{w}$ $36 = \mathbf{l} + \mathbf{w}$ $\mathbf{l} = 36 - \mathbf{w}$

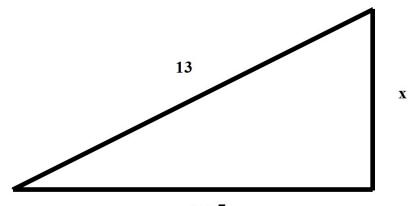
Step	Equation	Reason
0	$224 = \mathbf{l}^* \mathbf{w}$	1 Equation with 2 Unknowns
1	$224 = (36 - \mathbf{w})^* \mathbf{w}$	1 Quadratic Equation with 2 Unknowns
2	$224 = 36\mathbf{w} - \mathbf{w}^2$	


3	$w^2 - 36w + 224 = 0$
4	$(\mathbf{w}-8)(\mathbf{w}-28)=0$
5	$ \mathbf{w} - 8 = 0 \mathbf{w} - 28 = 0 \mathbf{w} = 28 w$
	$\mathbf{w} = 8$ $\mathbf{w} = 28$
($\mathbf{w} = 8$ " (smaller of two values)
6	l = 36 - w = 28"

Geometry – Right Triangle (I "smell" the Pythagorean Theorem)

In a **right** triangle:

 $(\operatorname{Side}_1)^2 + (\operatorname{Side}_2)^2 = (\operatorname{Hypotenuse})^2$ $\mathbf{a}^2 + \mathbf{b}^2 = \mathbf{c}^2$


Note: Hypotenuse is "longest" side

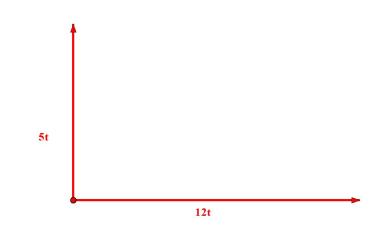
(2) The hypotenuse of a *right* triangle is 13". If one side is 7" longer that the other side, find the perimeter "**P**" and area "**A**" of this triangle.

Fundamental facts: $\mathbf{P} = \mathbf{a} + \mathbf{b} + \mathbf{c}$; $\mathbf{A} = \frac{1}{2} * \mathbf{a} * \mathbf{b}$

Let $\mathbf{a} = \mathbf{x}$ (one unknown side) Then $\mathbf{b} = \mathbf{x} + 7$ (other unknown side) $\mathbf{c} = 13$

x + 7

Step	Equation	Reason
0	$\mathbf{x}^2 + (\mathbf{x} + 7)^2 = 13^2$	
1	$x^2 + x^2 + 14x + 49 = 169$	
2	$2\mathbf{x}^2 + 14\mathbf{x} - 120 = 0$	
3	$\mathbf{x}^2 + 7\mathbf{x} - 60 = 0$	
4	$(\mathbf{x}-5)(\mathbf{x}+12)=0$	
5	$ \mathbf{x} - 5 = 0 $ $ \mathbf{x} + 12 = 0$ $ \mathbf{x} = 5 $ $ \mathbf{x} = -12$	
6	a = x = 5" (positive value) b = x + 7 = 12"	
7	P = a + b + c = 5 + 12 + 13 = 30"	
8	$\mathbf{A} = \frac{1}{2} * \mathbf{a} * \mathbf{b} = \frac{1}{2} * 5 * 12 = 30 \text{ sq''}$	


Motion

(3) At the same time when Dr W cycles **north** at a constant rate of 5 mph, Mrs. Dr W cycles **east** at 12 mph. When will they be 52 miles apart?

Fundamental facts: d = r * t; $a^2 + b^2 = c^2$

Dr W: $\mathbf{d}_1 = \mathbf{r}_1 * \mathbf{t}_1 = 5\mathbf{t}_1$ Mrs. Dr W: $\mathbf{d}_2 = \mathbf{r}_2 * \mathbf{t}_2 = 12\mathbf{t}_1$

Note: $\mathbf{t}_1 = \mathbf{t}_2$ (call it \mathbf{t}); they traveled the same length of time.

Let $\mathbf{a} = \mathbf{d}_1 = 5\mathbf{t}$ Then $\mathbf{b} = \mathbf{d}_2 = 12\mathbf{t}$ $\mathbf{c} = 52$

Step	Equation	Reason
0	$(\mathbf{d}_1)^2 + (\mathbf{d}_2)^2 = 52^2$	
1	$(5\mathbf{t})^2 + (12\mathbf{t})^2 = 52^2$	
2	$25t^2 + 144t^2 = 2704$	
3	$169t^2 = 2704$	
4	$t^2 = 16$	
5	$\mathbf{t} = \pm 4$	Time is NOT negative
5	$\mathbf{t} = 4 \mathrm{hr.} \big(\mathbf{t} > 0 \big)$	

Numbers

(4) A positive number "x" is $\frac{15}{4}$ greater than its reciprocal " $\frac{1}{x}$ ". Find the number "x".

Fundamental equation: $\mathbf{x} = \frac{15}{4} + \frac{1}{\mathbf{x}}$

Step	Equation	Reason
0	$\mathbf{x} = \frac{15}{4} + \frac{1}{\mathbf{x}}$	
1	$4\mathbf{x}(\mathbf{x}) = 4\mathbf{x}\left(\frac{15}{4} + \frac{1}{\mathbf{x}}\right)$	
2	$4\mathbf{x}^2 = 15\mathbf{x} + 4$	
3	$4\mathbf{x}^2 - 15\mathbf{x} - 4 = 0$	
4	$(\mathbf{x}-4)(4\mathbf{x}+1)=0$	
5	x-4=0 $4x+1=0x=4$ $x=-1/4$	
5	x = 4 $ x = -1/4$	
6	$\mathbf{x} = 4 \ (\mathbf{x} > 0)$	

Physics

Consider an object moving in a vertical direction only. Under certain assumptions, the **position** "s = s(t)" of this object at time "t" is given by

$$\mathbf{s} = \mathbf{s}(\mathbf{t}) = \frac{1}{2}\mathbf{g}\mathbf{t}^2 + \mathbf{v}_0\mathbf{t} + \mathbf{s}_0 = -16\mathbf{t}^2 + \mathbf{v}_0\mathbf{t} + \mathbf{s}_0 \quad (\text{ft})$$

where

$$\mathbf{g} = -32 \text{ ft/sec}^2$$

 $\mathbf{v}_0 = \text{ initial velocity } (\mathbf{t} = 0)$

 $\mathbf{v}_0 < 0$ means object "thrown downward"

 $\mathbf{v}_0 = 0$ means object "dropped"

 $\mathbf{v}_0 > 0$ means object "thrown upward"

$$\mathbf{s}_0 = \text{initial position } (\mathbf{t} = 0)$$
$$\mathbf{s}_0 < 0 \text{ is NOT an option}$$
$$\mathbf{s}_0 = 0 \text{ means object starts at ground}$$
$$\mathbf{s}_0 > 0 \text{ means object starts above ground}$$

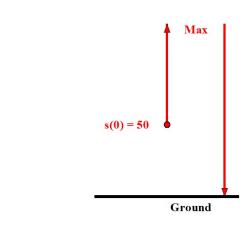
The velocity of the object is given by $\mathbf{v} = \mathbf{v}(\mathbf{t}) = \mathbf{v}_0 + \mathbf{g}\mathbf{t} = \mathbf{v}_0 - 32\mathbf{t} \text{ (ft/sec)}$

v < 0 means object traveling "downward"
v = 0 means object "stopped"
v > 0 means object traveling "upward"

The acceleration is given by $\mathbf{a} = \mathbf{a}(\mathbf{t}) = \mathbf{g} = -32$

The information above comes from "Physics".

(5) The equations defining the motion of an object traveling in a vertical direction are given by


$$\mathbf{s} = \mathbf{s}(\mathbf{t}) = -16\mathbf{t}^2 + 144\mathbf{t} + 50$$

Note:

 $\mathbf{v}_0 = 144 \text{ ft/sec} \text{ (object thrown upward)}$

 $\mathbf{s}_0 = 50$ ft (object starts 50 ft above ground)

 $\mathbf{v} = \mathbf{v}(\mathbf{t}) = 144 - 32\mathbf{t}$ $\mathbf{a} = \mathbf{a}(\mathbf{t}) = \mathbf{g} = -32$

a. Where is the object after 3 sec? Is it traveling upward, stopped, or downward?

 $\mathbf{s} = \mathbf{s}(3) = -16(3)^2 + 144(3) + 50 = 338$ ft v = v(3) = 144 - 32(3) = 48 ft/sec (upward)

b. Where is the object after 5 sec? Is it traveling upward/stopped/downward?

$$\mathbf{s} = \mathbf{s}(5) = -16(5)^2 + 144(5) + 50 = 370 \text{ ft}$$

 $\mathbf{v} = \mathbf{v}(5) = 144 - 32(5) = -16 \text{ ft/sec} \text{ (downward)}$

c. When does the object stop and where is it ?

$$\mathbf{v} = \mathbf{v}(\mathbf{t}) \stackrel{\text{SET}}{=} 0$$

$$144 - 32\mathbf{t} = 0$$

$$32\mathbf{t} = 144$$

$$\mathbf{t} = \frac{144}{32} = \frac{9}{2} \text{ sec}$$

$$\mathbf{s} = \mathbf{s}\left(\frac{9}{2}\right) = -16\left(\frac{9}{2}\right)^2 + 144\left(\frac{9}{2}\right) + 55 = 374 \text{ ft}$$

d. Since it was thrown upward $(v_0 = 144 > 0)$, when will it return to ground? How fast is it traveling?

$$s = s(t) \stackrel{\text{SET}}{=} 0$$

-16t² + 144t + 50 = 0
-8t² + 72t + 25 = 0
8t² - 72t - 25 = 0
a = 8; b = -72; c = -25
$$t = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$
$$t = \frac{-[-72] \pm \sqrt{[-72]^2 - 4[8][-25]}}{2[8]}$$
$$t = \frac{72 \pm \sqrt{5184 + 800}}{16}$$
$$t = \frac{72 \pm \sqrt{5984}}{16} \quad (t > 0)$$
$$t = \frac{72 \pm \sqrt{5984}}{16}$$
$$t \approx 9.334 \text{ sec}$$

$$v (\approx 9.334) \approx -154.713$$
 ft/sec