Equations – Radical [Roots]

MATH by Wilson
Your Personal Mathematics Trainer
MathByWilson.com

The basic idea is to trade an equation with one or more radicals - $\left(\sqrt[n]{\text{Expression}}\right)$ - for an equation that we have already studied that does NOT have radicals:

Original Equation: Contains Radicals

TRADE

New Equation: Does NOT Contain Radicals

Note that $\left(\sqrt[n]{\text{Expression}}\right)^n = \left[\left(\text{Expression}\right)^{1/n}\right]^n = \text{Expression is key to our}$ success!

Warning: The theory tells me to tell you that a solution of the **New Equation** does NOT have to be a solution of the **Original Equation**. Therefore, it is mandatory to check "potential" solutions to ensure that they are "actual" solutions.

Note: We should *always* graph our solutions, if any, on the number line.

Question 01: Solve for x: $\sqrt{2x+5} = \frac{x}{2}$

Solution:

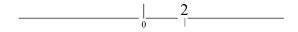
	- ·	ъ
Step	Equation	Reason
0	$\sqrt{2x+5} = \frac{x}{2}$	
1	$\left(\sqrt{2x+5}\right)^2 = \left(\frac{x}{2}\right)^2$	Eliminate Radical
2	$2\mathbf{x} + 5 = \frac{\mathbf{x}^2}{4}$	
3	$8\mathbf{x} + 20 = \mathbf{x}^2$	Quadratic Equation
4	$\mathbf{x}^2 - 8\mathbf{x} - 20 = 0$	•
5	$(\mathbf{x}+2)(\mathbf{x}-10)=0$	
6	$\begin{vmatrix} \mathbf{x} + 2 = 0 & & \mathbf{x} - 10 = 0 \\ \mathbf{x} = -2 & & \mathbf{x} = 10 \end{vmatrix}$	
7	$\mathbf{x} = -2$: Is NOT a solution $\sqrt{2[-2] + 5} \stackrel{?}{=} \frac{[-2]}{2}$ $1 \neq -1$	
8	$\mathbf{x} = 10$: Is a solution $\sqrt{2[10] + 5} = \frac{2[10]}{2}$ $5 = 5$	

Graph of the solution set:

Question 02: Solve for x: $\sqrt{6-x} + \sqrt{x+2} = 4$ (This is a long problem because there are two radicals to eliminate and they must be eliminated correctly! **Solution:**

Step	Equation	Reason
0	$\sqrt{6-\mathbf{x}} + \sqrt{\mathbf{x}+2} = 4$	
1	$\sqrt{6-\mathbf{x}} = 4 - \sqrt{\mathbf{x} + 2}$	Isolate one radical
2	$\left(\sqrt{6-\mathbf{x}}\right)^2 = \left(4-\sqrt{\mathbf{x}+2}\right)^2$	Eliminate 1 st Radical
3	$6 - \mathbf{x} = 16 - 8\sqrt{\mathbf{x} + 2} + (\mathbf{x} + 2)$	
4	$6 - \mathbf{x} = \mathbf{x} + 18 - 8\sqrt{\mathbf{x} + 2}$	
5	$-2\mathbf{x} - 12 = -8\sqrt{\mathbf{x} + 2}$	
6	$\mathbf{x} + 6 = 4\sqrt{\mathbf{x} + 2}$	Divide by "-2"
7	$\left(\mathbf{x}+6\right)^2 = \left(4\sqrt{\mathbf{x}+2}\right)^2$	Eliminate 2 nd Radical
8	$\mathbf{x}^2 + 12\mathbf{x} + 36 = 16(\mathbf{x} + 2) = 16\mathbf{x} + 32$	
9	$\mathbf{x}^2 - 4\mathbf{x} + 4 = 0$	
10	$\left(\mathbf{x}-2\right)^2=0$	
11	$\begin{vmatrix} \mathbf{x} - 2 = 0 \\ \mathbf{x} = 2 \end{vmatrix} \begin{vmatrix} \mathbf{x} - 2 = 0 \\ \mathbf{x} = 2 \end{vmatrix}$	
12	$\mathbf{x} = 2$: Is a solution	
	$\sqrt{6-[2]} + \sqrt{[2]+2} = 4$	
	2+2=4	
	4 = 4	

Graph of the solution set:



Equation 03: Solve for x: $\sqrt[3]{3-x} = 3$

Solution:

Step	Equation	Reason
0	$\sqrt[3]{3-\mathbf{x}}=3$	
1	$\left(\sqrt[3]{3-\mathbf{x}}\right)^3 = \left(3\right)^3$	Eliminate
1		Radical
2	$3 - \mathbf{x} = 27$	
3	$-\mathbf{x} = 24 \implies \mathbf{x} = -24$	
	$\mathbf{x} = -24$: Is a solution	
7	$\sqrt[3]{3-[-24]} = 3$	
,	$\sqrt[3]{27} = 3$	
	3 = 3	

Graph of the solution set: