Equations – Absolute Value

MATH by Wilson Your Personal Mathematics Trainer MathByWilson.com

Definition: The **absolute value** of a number "x", written $|\mathbf{x}|$, refers to the size (magnitude, distance from 0, ...). It will always be either 0 (|0| = 0) or a positive number (|-5| = 5 = |5|).

Note: $|\mathbf{x}| \ge 0 \& |\mathbf{x}| < 0$

INFORMALLY: If x < 0, to find the absolute value of x, just through away the minus sign: |-5| = 5. If x > 0, the absolute value of x is just x: |5| = 5.

FORMALY:

$$|\mathbf{x}| = \begin{cases} -\mathbf{x} \text{ if } \mathbf{x} < 0\\ 0 \text{ if } \mathbf{x} = 0\\ \mathbf{x} \text{ if } \mathbf{x} > 0 \end{cases}$$

Using the "formal definition", we have

$$|-5| = -(-5) = 5$$

 $|0| = 0$
 $|5| = 5$

We obtain the same results if we do things "informally". For now, just throw away the minus sign if there is one: |-5| = 5

KEY: The solution of $|\mathbf{u}| = \mathbf{b}$; $\mathbf{b} \ge 0$ is the *union* of the solutions of

a. u = -bb. u = +b

TRADE $|\mathbf{u}| = \mathbf{b}$; $\mathbf{b} \ge 0$ for $\mathbf{u} = -\mathbf{b}$ AND $\mathbf{u} = +\mathbf{b}$

Note: An absolute value equation trades for two (2) other equations!

Question 01: Solve for x: $|5-6\mathbf{x}|=3$ **Solution:**

Step	Equation		Reason
0	$\left 5-6\mathbf{x}\right =3$		
			Trade
	$5-6\mathbf{x}=-3$	$5-6\mathbf{x}=3$	for
1	$6\mathbf{x} = 8$	$6\mathbf{x} = 2$	2
	$\mathbf{x} = \frac{8}{6} = \frac{4}{3}$	$\mathbf{x} = \frac{1}{3}$	Equations

Graph of the solution set:

Question 02: Solve for x: $|\mathbf{x}^2 + 2\mathbf{x}| = 2$ Solution:

Step	Equation	Reason	
0	$\left \mathbf{x}^2 + 2\mathbf{x}\right = 2$		
1	$\mathbf{x}^2 + 2\mathbf{x} = -2$	$\mathbf{x}^2 + 2\mathbf{x} = 2$	Trade
	$\mathbf{x}^2 + 2\mathbf{x} + 2 = 0$	$\mathbf{x}^2 + 2\mathbf{x} - 2 = 0$	for 2
	$\mathbf{x} = \frac{-2 \pm \sqrt{2^2 - 4(1)(2)}}{2}$	$\mathbf{x} = \frac{2 \pm \sqrt{2^2 - 4(1)(-2)}}{2}$	Equations
	$=\frac{-2\pm\sqrt{-4}}{2}$	$\mathbf{x} = \frac{2 \pm \sqrt{12}}{2}$	
	$=\frac{-2\pm 2\mathbf{i}}{2}$	$=\frac{2\pm 2\sqrt{3}}{2}$	
	$=-1\pm i$	$=1\pm\sqrt{3}$	

Graphs: Four (4) Solutions

This calculation verifies that $\mathbf{x} = -1 + \mathbf{i}$ is a solution of $\mathbf{x}^2 + 2\mathbf{x} + 2 = 0$

Your Turn: Show that $\mathbf{x} = -1 - \mathbf{i}$ is also a solution of $\mathbf{x}^2 + 2\mathbf{x} + 2 = 0$

FYI 02: Consider $x^2 + 2x - 2 = 0$

$$\mathbf{x} = -1 - \sqrt{3} & \& \ \mathbf{x} = -1 + \sqrt{3}$$
$$\mathbf{x} + 1 + \sqrt{3} = 0 & \& \ \mathbf{x} + 1 - \sqrt{3} = 0$$
$$\left(\mathbf{x} + 1 + \sqrt{3}\right)\left(\mathbf{x} + 1 - \sqrt{3}\right) = 0$$
$$\mathbf{x}^{2} + \mathbf{x} - \sqrt{3} & \mathbf{x} + \mathbf{x} + 1 - \sqrt{3} + \sqrt{3} & \mathbf{x} + \sqrt{3} - \left(\sqrt{3}\right)^{2} = 0$$
$$\mathbf{x}^{2} + 2\mathbf{x} - 2 = 0$$

Hence $\mathbf{x}^2 + 2\mathbf{x} + 2$ factors as $(\mathbf{x} + 1 + \sqrt{3})(\mathbf{x} + 1 - \sqrt{3})$ UGLY Factors! Substituting $\mathbf{x} = -1 + \sqrt{3}$ into $\mathbf{x}^2 + 2\mathbf{x} + 2$ yields $\mathbf{x}^2 + 2\mathbf{x} - 2 = (-1 + \sqrt{3})^2 + 2(-1 + \sqrt{3}) - 2$ $= 1 - 2\sqrt{3} + (\sqrt{3})^2 - 2 + 2\sqrt{3} - 2$ = 0

This calculation verifies that $\mathbf{x} = -1 + \sqrt{3}$ is a solution of $\mathbf{x}^2 + 2\mathbf{x} - 2 = 0$

Your Turn: Show that $\mathbf{x} = -1 - \sqrt{3}$ is also a solution of $\mathbf{x}^2 + 2\mathbf{x} - 2 = 0$