Inequalities Linear

MATH by Wilson Your Personal Mathematics Trainer MathByWilson.com

We consider two (2) types of linear inequalities:

1. One Inequality Symbol: $\{\leq;<;\geq;>\}$

Question 01: Solve for x: $4-3(2+x) \le x+5(3-2x)$ **Solution:**

Step	Inequality	Reason
0	$4 - 3(2 + \mathbf{x}) \le \mathbf{x} + 5(3 - 2\mathbf{x})$	
1	$4-6-3\mathbf{x} \le \mathbf{x}+15-10\mathbf{x}$	
2	$-2 - 3\mathbf{x} \le -9\mathbf{x} + 15$	
3	$9\mathbf{x} - 3\mathbf{x} \le 15 + 2$	
4	6 x ≤17	
5	$\mathbf{x} \le \frac{17}{6}$	

Graph of the solution set:

Question 02: Solve for x: $3 - \frac{7}{3}x > 4\left(\frac{3}{8}x + 1\right) - 5$ Solution:

Step	Inequality	Reason
0	$3 - \frac{7}{3}\mathbf{x} > 4\left(\frac{3}{8}\mathbf{x} + 1\right) - 5$	
1	$3 - \frac{7}{3}\mathbf{x} > 4\left(\frac{3}{8}\mathbf{x} + 1\right) - 5 = \frac{3\mathbf{x}}{2} - 1$	

2	$\frac{3}{1} - \frac{7}{3}\mathbf{x} > \frac{3\mathbf{x}}{2} - \frac{1}{1}$	All Fractions
3	$6\left(\frac{3}{1}-\frac{7}{3}\mathbf{x}\right) > 6\left(\frac{3\mathbf{x}}{2}-\frac{1}{1}\right)$	Multiply by Common Denominator "6"
4	18 - 14x > 9x - 6	
5	-14x - 9x > -6 - 18	
6	-23x > -24	
7	$\mathbf{x} < \frac{-24}{-23} = \frac{24}{23}$	Note switch in direction

Graph of the solution set:

2. Two Inequality Symbols: {≤;<;≥;>} - symbols pointing the same direction

Question 03: Solve for x: $-4 < 1-3x \le 4$ **Solution:**

Note: The solution of $-4 < 1-3x \le 4$ is actually the solution of two (2) inequalities

-4 < 1 - 3x and $1 - 3x \le 4$

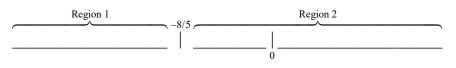
but they can be written and solved as $-4 < 1-3x \le 4$ since the inequality symbols are pointing in the same direction.

Step	Inequality	Reason
0	$-4 < 1 - 3\mathbf{x} \le 4$	
1	$-4 - 1 < -3\mathbf{x} \le 4 - 1$	
2	$-5 < -3\mathbf{x} \le 3$	
3	$\frac{-5}{-3} > \mathbf{x} \ge \frac{3}{-3}$	Divide by a negative Change direction of inequality symbol

4
$$\frac{\frac{5}{3} > \mathbf{x} \ge -1}{-1 \le \mathbf{x} < \frac{5}{3}}$$

Graph of the solution set:

We now show an additional way to solve a linear equation when a solution exists. Consider


$$5 - 2(\mathbf{x} + 3) \ge 3\mathbf{x} + 7$$

First, we solve the corresponding linear equation

$$5-2(\mathbf{x}+3) = 3\mathbf{x}+7$$
$$5-2\mathbf{x}-6 = 3\mathbf{x}+7$$
$$-1-7 = 3\mathbf{x}+2\mathbf{x}$$
$$-8 = 5\mathbf{x}$$
$$\mathbf{x} = -\frac{8}{5}$$

Since the inequality is " \geq ", the number $\mathbf{x} = -\frac{8}{5}$ will be a solution. Now

the number $\mathbf{x} = -\frac{8}{5}$, called a **boundary point**, divides the number line into two (2) regions:

One region, including $\mathbf{x} = -\frac{8}{5}$, will be the solution set; the other region will NOT. Now to find out, just pick a point in each region and determine which point satisfies the original inequality:

- 1. Choose, say x = -3: $5-2([-3]+3) \ge 3 * [-3]$ $5 \ge -9$ **TRUE**!
- 2. Choose, say x = 0:

$$5 - 2\left(\boxed{0} + 3\right)^{?} \le 3 * \boxed{0}$$
$$-1 \stackrel{?}{\ge} 0$$

FALSE!

The solution set is $\left(-\infty, -\frac{8}{5}\right]$: