FUNctions – Domain

[Allowable Inputs: x-values] [Projection of graph onto the x-axis]

MATH by Wilson Your Personal Mathematics Trainer MathByWilson.com

1

Basic Function Idea/Concept – For each "allowable input:", there corresponds a "unique output":

Allowable Input $\stackrel{\text{implies}}{\Rightarrow}$ Unique Output

A menu is a "simple" function:

Menu Items	Price
Fries	\$1.95
Cheeseburger	\$3.75
Steak Sandwich	\$4.50
Iced Tea	\$150
Lemonade	\$1.50

The list of menu items is the domain. Each item corresponds to a unique price:

$Cheese burger \rightarrow \3.75

Note that different items on the menu are allowed to correspond to the same price:

Iced Tea \rightarrow \$1.50

Lemonade \rightarrow \$1.50

The functions **f** we consider involve just real numbers and are referred to as "**real-valued functions**". That is, both "x" & "y = f(x)" must be real numbers.

Assumption: We consider s, that is, functions that take real #'s to real #'s

Recall from our set theory material:

- 1. The symbol "⊆" means "contained in" or "a subset of"
- 2. The symbol " \in " means "is an element of" "or "member of"
- 3. \mathbb{R}_x represents a copy of the *horizontal* number line
- 4. \mathbb{R}_{v} represents a copy of the *vertical* number line

Using these symbols, we present the technical definition of a function:

Definition: A function f from a set $X \subseteq \mathbb{R}_x$ unto a set $Y \subseteq \mathbb{R}_y$ is a correspondence that associates with each $x \in X$ one and only one $y \in Y$. This is sometimes denoted $f: X \to Y$. Also, the correspondence, rule, formula, ... is frequently denoted by f(x): y = f(x).

 $X \subseteq \mathbb{R}_x$ is called the **domain**: **Domain** f = Dom fNote: The *domain* of f is a subset of all the real numbers on the *horizontal* number line.

 $\mathbf{Y} \subseteq \mathbb{R}_{\mathbf{y}}$ is called the range: Range $\mathbf{f} = \mathbf{Rng} \mathbf{f}$

Note: The *range* of **f** is a subset of all the real numbers on the *vertical* number line.

To officially specify a function, we need

- 1. Name
- 2. Symbol
- 3. Domain
- 4. Correspondence (rule, formula, ...)
- 5. Range

Note, however, that all of this information is usually not initially given but can be determined.

The **domain** of **f** may be defined two (2) ways:

1. **Explicitly** – the domain is given

(1) Consider **f** defined by the following table:

X	$\mathbf{y} = \mathbf{f}(\mathbf{x})$
3	7
-2	1
4	-3
6	2

Its domain is the *vertical* "x" column: **Dom** $\mathbf{f} = \{-2, 3, 4, 6\}$. By the way, **Range** $\mathbf{f} = \{-3, 1, 2, 7\}$

Note: f(-2) = 1Note: f(4) = -3 Note: f(7) = undefined (does NOT exist, TRASH, \exists) since $x = 7 \notin Dom f$

Geometrically, Dom f is represented by

 $\frac{-2}{|} = \frac{3}{|} = \frac{4}{|} = \frac{6}{|}$ (2) Consider $\mathbf{y} = \mathbf{f}(\mathbf{x}) = 4\mathbf{x}^2 - 2\mathbf{x}$; Dom $\mathbf{f} = [-3, 2)$ We have 1. $\mathbf{y} = \mathbf{f}(-3) = 4(-3)^2 - 2(-3) = 42$ 2. $\mathbf{y} = \mathbf{f}\left(\frac{1}{2}\right) = 4\left(\frac{1}{2}\right)^2 - 2\left(\frac{1}{2}\right) = 0$ 3. $\mathbf{y} = \mathbf{f}(1) = 4(1)^2 - 2(1) = 2$ 4. $\mathbf{y} = \mathbf{f}(2) = \mathbb{A}$; note that $\mathbf{x} = 2 \notin \text{Dom f}$ due to the ")"

Remember ")" means not included and "[" means included

Note: If the domain is given, we are *mandated* to use it!

2. Implicitly – the domain is defined by **Dom** $\mathbf{f} = {\mathbf{x} \in \mathbb{R}_x | \mathbf{f}(\mathbf{x}) \in \mathbb{R}_y}$, so we must determine it ourselves. Recall that "{}" refers to a set of elements, in this case real numbers, and "|" means "such that". We must determine all the real numbers \mathbf{x} such that $\mathbf{y} = \mathbf{f}(\mathbf{x})$ is also a real number. It is *usually* easier to determine which real numbers must be rejected. There are two (2) ways of excluding a real number \mathbf{x} from being in the domain of a function \mathbf{f} :

1. Division by zero: A value for \mathbf{x} can NEVER make the denominator zero!

 $\frac{\text{Numerator}}{\text{Denominator} \neq 0}$

2. Negative under an even root: A value for x can NEVER make an expression under an even root negative!

 $EVEN V Expression \neq 0$

The second condition disallows "complex numbers".

Note: We will represent the domains both analytically and geometrically.

(3) Find the domain of f(x) = -3.

Solution: The domain is given by **Dom** $\mathbf{f} = \mathbb{R}_x = (-\infty, +\infty)_x$ since there is no way to divide by zero and there are no even roots in the formula defining \mathbf{f} :

(4) Find the domain of f(x) = 3 - 2x.

Solution: The domain is given by **Dom** $\mathbf{f} = \mathbb{R}_x = (-\infty, +\infty)_x$ since there is no way to divide by zero and there are no even roots in the formula defining \mathbf{f} :

5

(5) Find the domain of $f(x) = 15x^2 - 2x - 8$.

Solution: The domain is given by **Dom** $\mathbf{f} = \mathbb{R}_x = (-\infty, +\infty)_x$ since there is no way to divide by zero and there are no even roots in the formula defining \mathbf{f} :

Note: The functions above are examples of polynomial functions and polynomial functions always satisfy:

Dom Polynomial = \mathbb{R}_{x}

(6) Find the domain of $\mathbf{f}(\mathbf{x}) = \frac{\mathbf{x}}{\mathbf{x}-2}$. Solution: Since division by zero is NOT allowed, $\mathbf{x}-2 \neq 0$ so that $\mathbf{x} \neq 2$.

The domain is thus given by **Dom** $\mathbf{f} = \mathbb{R}_x \setminus \{2\} = (-\infty, 2) \cup (2, +\infty)_x$:

(7) Find the domain of $\mathbf{f}(\mathbf{x}) = \frac{2\mathbf{x}+5}{3\mathbf{x}^2-2\mathbf{x}-8}$.

Solution: Division by zero is NOT allowed, that is, $3x^2 - 2x - 8 \neq 0$:

Step	Equation	Reason
0	$3\mathbf{x}^2 - 2\mathbf{x} - 8 = 0$	Solutions will NOT be in the domain
1	$(3\mathbf{x}+4)(\mathbf{x}-2)=0$	Factor

	$3\mathbf{x} + 4 = 0 \mathbf{x} - 2 = 0$		Trading a quadratic equation for two	
2	4	x = 2	linear equations	
	$\mathbf{x} = -\frac{1}{3}$			

The domain is given by **Dom f** =
$$\mathbb{R}_{\mathbf{x}} \setminus \left\{-\frac{4}{3}, 2\right\} = \left(-\infty, -\frac{4}{3}\right) \cup \left(-\frac{4}{3}, 2\right) \cup \left(2, +\infty\right)_{\mathbf{x}}$$
:
$$\frac{/////////2}{-4/3} \cup \left(-\frac{4}{3}, 2\right) \cup \left(2, +\infty\right)_{\mathbf{x}}$$

(8) Find the domain of $f(x) = \sqrt{2-5x}$.

Solution: An expression under an **even root** cannot be negative: $2-5x \neq 0$:

Step	Inequality	Reason
0	$2-5\mathbf{x} \ge 0$	Solutions are domain elements
1	$2 \ge 5\mathbf{x}$	
2	$\frac{2}{5} \ge \mathbf{x} \text{OR} \mathbf{x} \le \frac{2}{5}$	

Thus the domain is given by Dom
$$\mathbf{f} = \left(-\infty, \frac{2}{5}\right]_{\mathbf{x}} : \frac{1}{1} :$$

(9) Find the domain of $f(x) = \sqrt{12 - x - x^2}$.

	Step	Inequality	Reason	
	0	$12 - \mathbf{x} - \mathbf{x}^2 \ge 0$	Domain elements	
	1	$(3-\mathbf{x})\big(4+\mathbf{x}\big) \ge 0$	Factor	
		Determine Boundary Points:		
	2	$(3-\mathbf{x})\big(4+\mathbf{x}\big)=0$		
		x = -4; $x = 3$		
		Check Boundary Points:		
	3	1. $x = -4$: Yes!		
		2. $x = 3$: Yes!		
		Check Intervals:		
		1. $(-\infty, -4)$: Test Point x = -10; $12 - [-10] - [-10]^2 \stackrel{?}{\ge} 0$ False		
The	4	2. $(-4,3)$: Test Point $\mathbf{x} = 0$; $12 - [0] - [0]^2 \stackrel{?}{\geq} 0$ True		domain is given by Dom f = $[-4,3]$:
		3. $(3, +\infty)$: Test Point x = 10; $12 - [10] - [10]^2 \stackrel{?}{\ge} 0$ False		
	5	Solution: [-4,3]		
	$\left[\frac{////}{0}\right]_{-4}$	/////]		

Solution: An expression under an *even* root cannot be negative: $12 - x - x^2 \neq 0$:

(10) Find the domain of
$$\mathbf{f}(\mathbf{x}) = \frac{\sqrt{\mathbf{x}+4}}{\mathbf{x}-6}$$
.

Solution: An expression under an even root cannot be negative: $x + 4 \neq 0$:

Step	Inequality	Reason
	$\mathbf{x} + 4 \ge 0$	Possible
0		Domain
		elements
1	$\mathbf{x} \ge -4$	

Also, the denominator cannot be zero: $x - 6 \neq 0$ so that $x \neq 6$. Hence, the domain is given by

(11) Find the domain of $\mathbf{f}(\mathbf{x}) = \begin{cases} 1+2\mathbf{x} & ; -3 \le \mathbf{x} < 2\\ 1-2\mathbf{x} & ; 2 \le \mathbf{x} < 5 \end{cases}$.

This is called a **piece-wise function**. We have

$$f(-7) = Undefined$$

 $f(1) = 1 + 2(1) = 3$
 $f(3) = 1 - 2(3) = -5$
 $f(8) = Undefined$

Solution: The function f can be illustrated as follows:

$$(-3,2)^{1-2x}$$
 $(2,5)^{1+2x}$

The domain is the union of the two (2) sets of x values:

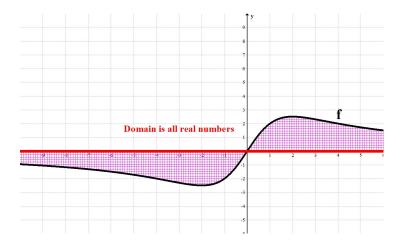
Dom f =
$$[-3,2) \cup [2,5] = [-3,5]$$
.

Geometrically,

If the graph of the function \mathbf{f} is known, the domain is the projection of the graph onto the x-axis:

10

FUNction 01:



FUNction 02:

